SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

=) REPORT DOCUMENTATION PAGE »
) -] 1.‘RE‘PO T NU}MBER * iy 2. GOVYT ACCESSION NOJ 3. { £
/[:.{. | HPPB @ - 23 / , ~An9 b 1171 Y

] TS

TION
NG ORM

o O COVERED

L’\

P e ¢ p .

i

L —

Details of RLL- 1"\& _——

5~
TR o €
). Dy vy l 1300 K .,Ju 'r o 4‘, Technical r

4l PERFORMING ORG. RHPORY NUMBER

OQ DJR;‘sﬁs"éil Greiner -and Douglas B./ Lenat GE

~—J 57 PERFORMING ORGANIZATION NAME AND-ADDRESS - ~f -~ ===~
!-\" Computer Science Department

RA

S A T J ™ 8. CONTRACT OR GRANT NUMBER(s)

0.’p ELEME
’nn & WORK UN!

T.PROJEG
NUMBERS

Stanford University

Stanford, California 94305 ’ {4 \ ———
11, CONTROLLING OF FICE NAME AND ADDRESS \Tt /{

Mathematical & Information Sciences Di

Octobuussd® 80 -

Office of Naval Research, 800 No. Quincy ['.-NUMBER OF PAGES

--_~_\

14, MONITORING AGENCY NAME & ADDRESS(/f different from Controliing Oliice) 15, SECURITY CLASS. (of this report)

é Y 15e, DECLASSI{ICATION/DOVINGRADING

SCHEDUL

—

N
Ne
(o))
c Street, Arlington, Va, 22217 68
<<

16. DIST RIBUTION STATEMENT (of this Report)

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, ! ditferent from Report)

Reports Distribution List, July 31, 1980

18, SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on re.erse slde if necessary and identify by block number)

~ Representation, Knowledge, Language, Self-Description, Self-

Modification, Expert Systems.

20. ABSTRACT (Continue on reverss slde If necessary and identify by dblock number)

DTIC

ELECTE
MAR 25 1981

8/N 0102.LF.014.660)

DD ‘52:'1’, 1473 E£OITION OF 1 NOV 65 1S OBSOLETE O 9 7_1 J O

2

UM FiLE copy

81 2

SECURITY CLASSIFICATION OF THIS PAGE (When Dafa Bntered)

4
:
%
£
3

*
2
i
4
&
X
h

Stanford Heuristic Programming Project October 1980
HPP-80-23 (Working Paper)

Detaiis of RLL-1
by

Russell Greiner and Douglas B. Lenat
Computcr Science Deptartment
Stanford University

Supplement to
"RLL-1:
A Representation Languzge Language”

Accoasion F

For | Heuristic Programming Project
' | NTIS GRA&I z Computer Science Department
! DTIC TAB O

Stanford University

Unannounced O Stanford, California 94305
e Tl | DTIC
\e
Byw
Distritution/ . ELECTE
[Availability Codes - MAR 25 1981
{ 7 |Aveil aaa/or

Dist Special

Al - °

DISTRIBUTION STATEMENT A

Pl Smvtniordininube st SSmia o i e s

Approved for public release; 3 1
Disttibution Unlimited

Details Of RLL-1

- ~This paper includes many implementation level details about tlzv e RLL-1 system, described in a

companion paper, ¥RLL-1: A Representation Language Language'€ (Heuristic Programming Project
Working Paper HPP-80-9, October 1980, at Stanford University, by Russell Greiner).

S HE ceTEpTI ARE As FollewS s

) Table of Contents o
E\.(Special [6], 111 J U T T T T e e e e IS 6 S
E. Naming CORVENUONS, «u s v v v are sasnme v wove o v ov oo oo B
E26LeBend v T e e e e El
E.3*Actual Uruts . , P e T e e e e e e e e ‘B2

E.4%Index of ‘U'/ts R A, . E23 —
F&Envu'onment._... B S F.1
Fl&Top Level Ifuncuons —— v b e T e e e e e .. Fi1
F.29Functions needed t6 footstrap RLL-1, ——r -.....F3
F.3%Convenience Functions , oc...... B F9
F.4¥Advised Functions , . et e e e e ——————— e F11
F.58Global Variables , 2*L. F.11

A

Anything

AnyAbstractCbiect AnyCancrateQbiect

J oy
-~ N

AnyAbstactThing&Unit AnyConcreteThing&Unit

AnyPartiaiSpec AnyCharacteristic
Anylnheritance
AnyintensionalCbject AnyUser AnyClass AnyFormat AnyDatatype
/v AnyOverhead AnyProcess /O\
AnyVariacie AnyArchetype . AnySiotFormat AnyValueFormat
AnyUnitForSiat
AnyUnitListProcess AnyFunction
AnyUnitProcess AnyUnitListFn AnyFunctional
AnyStorablefn AnySlotListFn
AnyUnitFn AnySlotCaombiner
AnySiot

AnyField Any$SELFSSiot
AnyComputableSiot AnyPrimitiveSiot
AnyinheritableSiot

Diagram #1

Classes of Units

R s

- A

| Appendix E: Speeial Units B-1

Appendix E: Special Units

Many RLL-1 units are directly used by one or more of the RLL-1 functions listed
below. These special ones are enumerated below, following a depth first traversal of the
RLL-1 Knowledge Base. Diagram #1 portrays a skeleton of this hierarchy, showing the
subset relations joining these various classes.

E.1: Naming Conventions.

Any*** - refers to the class of all ***objects [e.g. AnySlot refers to slots]
Typical®*** . refers to the abstract object which typifies members of Any***
Fess - refers to a format [e.g. FSingleton]

| b - refers to inheritance type [e.g. IExamples]

My*s* - is a syntactic slot, [e.g. MyCreator|

##2.Instances - holds value of syntactic slot, My***, to be inherited.

« This ***.Instances slot appears in Typical— units
All***s - refers to extension of **” slot Je.g. Alllsas extends Isa)
**2Type - refers to a datatype, |e.g. IntegerType]
FoFor*** . the value of this slot is a lunction, [e.g. ForForGetting]
To*** - the value of this slot is a function, ...
$22Value - the value of this slot refers to slot (as opposed to a field)
$*3Field - the value of this slot refers to field (currently not used)

E.2: Legend.

This RLL-1 Knowledge Base is organised into classes, which each contain a set of
elements. Associated with each such class of units is a list of slots, which are meaningful
for elements of this class. For example, the Datatype slot makes sense for any function;
but is meaningless for, say, people.

Each entry is Section E.3 will describe a class of units; including relevant features
of the members of this class, and the list of slots defined for each member. The format

used will be:

Class Name (7) - A short description of what the class Class Name represents.
SuperClass: {Important immediate supersets of this class}

SubClass: {Important immediate subsets of this class}
There are currently n examples.

P

E-2 Appendix E: Special Units

Direct Examples: {Important examples of this class} _
The following slots are defined for all “members of Class Name"s:

slot, - [sloty’s range] A short description of slot;.

Inverse: - sloty's inverse
HLDefn: slot;'s high level definition
ArgList: argi, arga, ... arga,

slotn - [slotn’s range] A short description ol slotw.

Inverse: slotn's inverse
HLDefn: slotx's high level definition
Arglist: argy, arga, ... AgMy

We view a slot as a function, which maps a unit onto some value. The “ilot('s
range” field above encodes the space of permissible values the slot; of any unit may
take. There are several basic categories of slots, each with its own type of range. When
Range is FunetionType, it is relevant to know what slot,'s HighLevelDefinition, and
ArgList is - otherwise these slots are not even well defined. Similarly, unless Range is
UnitType, it is not possible for Slot; to have an inverse. '

Subsection E.4 will provide an index to the units presented in Section E.3, using
the sequential numbers assigned to each class. Each class will refer to that number, and
each slot will point to the number associated with the class to which is affiliated.

E.3: Actual Units,
Anything (1) - The topmost node, in all the hierarchies.
SubClass: AnyAT&U AnyAbstractThing AnyCT&U AnyConcreteThing AnyFocus
AnyUnit

Direct Examples: AnyClassOfObjects
The following slots are defined for all "thing''s:

Isa - [FSet (UnitType (*P AnyClassOfObjects))] This primitive slot is the fundamental
hierarchical link in this system, specilying those classes to which this unit belongs.
Note that its format is SET - hence this system can handle a DAG structure; better
for our putposes than a tree,

Inverse: UnitExamples

Characteristics ~ [FSet NonNILType] This lists some essential characteristics of this
unit. (Not currently in use.)

Prototypes — [FSet (UnitType (*P AnyArchetype))] This points to each typical example

The slots appropriate for all “ATEHU"'s are those defined for each of: (AnyUnit AnyAbstractThing).

Appendix E: Speciai Units E-8

HighLevelDeln: (Unioning FunctionCharacter FormatCharacter)

Descr - [FSingleton NonNILType| This describes this unit. (It is used to generate this
document.)
Alllsas - [FSet Unit Type] This specifies each class to which this unit belongs. (It includes
each SuperClass of this unit's Jsa slot.)
Inverse: AllExamples
HighLevelDefn: (Composition SuperClass® lsa)

AllGenls - [FSet UnitType| This points to a list of those units which are somehow more
general than this unit.

Inverse: AllSpecs .
HighLevelDefn: (Unioning Prototypes (OneOl SuperClass* SuperTypEx* SuperSlot*
GenlAct?))
AllSpecs - [FSet UnitType] This lists every unit which is somehow more precise than !
this unit.
Inverse: AllGenls
HighLevelDefn: (Unioning AliTypicalExampleOfs (OneOf SubClass* SubTypEx* SubSlot*
SpecAct?))

of this unit, not necessarily in order of increasing generality.
Inverse: AllTypicalExampleOfs
HighLevelDefn: (Composition TypicalExample Alllsas)

Specializations - [FFSet UnitType| This points to each unit which “specialises” this unit.

Inverse: Generalizations
HighLevelDefn: (OneQf SubSlot SpecAci SubTypEx SubDT SubClass)

OrderedPrototypes ~ [FOrderedSet UnitType] Enumerates the prototypes of this unit in
order of increasing generality (i.e. TypicalDog would precede TypicalAnimal .)
HighLevelDeln: (PutinOrder Prototypes SuperTypEx* NIL MembForOrdPro)

AnyAT&U (2)- This is a HACK - to deal with the units in this system, which represent
both some abstract object (NOT in the world,) and themselves...
SuperClass: Anything
SubClass: AnyintensionalObject AnyPartialSpec

AnylntensionalObject () - Descendants of this unit describe some entity in the world
intensionally - as opposed to directly referring to in.
SuperClass: AnyAT&U AnyCT&U
SubClaas: AnyArchetype AnyDescriptor AnyUnitForSlot AnyVariable

E-4§ - Appendix E: Special Units

AnyArchetype ({) - Every typical example of some class is an archetype, and descends
from this unit.
SuperClass: AnylIntensionalObject

There are currently 123 examples.
The following slots are defined for all “Archetype’s:

NewPossibleSlots - [FSet SlotType] This lists the names of slots which are meaningful
for every “instance” of this typical example. Furthermore, this is the highest place
where this slot is meaningful (hence the *newness” of the name.)

Inverse: MakesSenseFor
HighLevelDefn: (Composition (Soiten NewPossibleSlots) MyComposeOf)

TypicalEzampleOf - [FSingleton (UnitType (*P AnyClassOfObjects))] Refers back,
from the typical example unit, to the class of elements it typifies.
Inverse: TypicalExample

SuperTypEz - |[FSet UnitType] This denotes the relation connecting TypicalDog to
TypicalAnimal -i.e. asuperset relation hoids between the elements each (respectively)
typifies.

Inverse: SubTypEx
HighLevelDefn: (Composition TypicalExample SuperClass TypicalExampleOf)

SubTypEz - [FSet UnitType| See SuperTypEz .
Inverse: SuperTypEx
HighLevelDefn: (Compesition TypicalExample SubClass TypicalExampleOf)

PossibleSlots - [FSet UnitType| This is obsolete - and will soon be deleted.
HighLevelDeln: (Composition NewPossibleSlots SuperTypEx*)

SuperTypEz* - [FSet UnitType] This is the transitive closure of SuperTypEz .
Inverse: SubTypEx*
HighLevelDefn: (Composition TypicalExample SuperClass* TypicalEzampleOf)

SubTypEz* - |[FSet (UnitType (*P AnyArchetype))] This is the transitive closure of
SubTypEz .
Inverse: SuperTypEx*
HighLevelDefn: (Composition TypicalExample SubClass®* TypicalExampleOf)

AnyDescriptor (5)- This will eventually hold descriptors - a whole class of entities which

will have to be defined...
SuperClass: AnylIntensionalObject

—

f

Appendix E: Speclal Units E-5

AnyUnitForSlot (6) - At times, there is more than just one "morsel” of information
needed to describe the value of some unit's slot. RLL then devotes an entire unit to
hold this information. Such units descend from this AnyUthorSlot.

SuperClass: AnylntensionalObject
The following slots are defined for all *“UnitForSlot"s

vaLue - |[FSingleton NonNILType] When a unit is allocated to store facts about the
value of a siot, the actual value of that slot, il any, is kept in the *vaLue* slot of

that sub unit.
HighLevelDefn: (Application (Composition Defn LivesInSlot) LivesInUnit)

AnyVariable (7) - This class contains the universaily or existentially bound variables.
Note that this is a META description of said units.
SuperClass: AnyIntensionalObject

AnyPartialSpee (8) - This class includes objects which are only partial specified. This
is essential to deal with MOLGEN UNITs package notion ol SPEC inheritance - in

which some object is specified more and more compietely.
SuperClass: AnyAT&U
SubClass: AnyGenericEvent
The following slots are defined for all 'PartialSpec’’s

MyRefineSiots - |[FSet SlotType] The value of U:MyRefineSlots is a list of those slots
on the unit U which are used to specily [acts which are not definitional.

AnyAbstractThing (9) - Instances refer to intangible objects; as opposed to concrete
things (such as real world people or units) .
SuperClass: Anything

AnyCT&U (10)- This is a HACK - to deal with the units in this system, which represent
both some object in the world, and themselves...
SuperClass: Anything
SubClass: AnyCharacteristic AnyClassOfObjects AnyDecomposableObject AnyEvent
Anylnheritance AnyintensionalObject AnyOverhead AnyProcess AnyUnit
AnyUser
The slots appropriate for all "CTEU"s are those defined for each of: { AnyUnit AnyConereteThing).

AnyCharacteristic (11) - This fathers units which describe characteristics of some entity
— as opposed to something which actually exists in and of itself.
SuperClass: AnyCT&U
SubClass: AnyDatatype AnyFormat

E-s Appendix E: Special Units

AnyDatatype (12)- Every datatype (used for building up type specifications,) descends
from this.
SuperClass: AnyCharacteristic
Direct Examples: KBType NonNILType NumberType BooleanType Unrestricted Type
FunctionType SlotType IntegerType UnitType StringType

The following slots are defined for all ‘Datatype’’s:

EqualDTSpec ~ [FSet (FListN (UnitType (*P AnyDatatype)) UnrestrictedType)| This
helps relate one datatype to another - by defining a set of equivalent datatype-
datarange pairs.

Versi fyType - |FSingleton FunctionType] DT: Veri fyType is a predicate, returning nonNJL
for all elements which qualify in this datatype.

GenerateAll - [FSingleton FunctionType| DT:GenerateAll returns a list of all members
of the datatype, DT .

SuperDT - [FSet (UnitType (*P AnyDatatype))] This points to the list of more general
datatypes - i.e. those which contain a superset of this datatype’'s members.

Inverse: SubDT

SubDT ~ [FSet (UnitType (*P AnyDatatype))] DT:SubDt points to Datatypes which

accept a subset of those accepts by the datatype DT .
Inverse: SuperDT

Rangelnterpreter - [FSingleton FunctionType] DT:Rangelnterpreter is a function which
helps parse the value of S:DataRange , which is used to determine the appropriate
values to fill U:S .

IsTypeOf - [FSet SlotType| Points from a datatype to those units representing functions
whose range is composed of this datatype.

Inverse: Datatype

SuperDT* ~ [FSet UnitType] A list of a unit's SuperDT, THEIR SuperDT, etc.
Inverse: SubDT*
HighLevelDeln: (Starring SuperDT)

SubDT* - [FSet (UnitType (*P AnyDatatype))] Transitive closure of SubDT .
Inverse: SuperDT*
HighLevelDefn: (Starring SubDT)

AnyFormat (13) - From this descends the units which each serve to describe some
format; which can be used in a type description.
SuperClass: AnyCharacteristic
SubClass: AnySlotFormat AnyValueFormat
The following slots are defined for all 'Format's:

Appendix E: Special Units E-7

FnForAdding - |[FSingleton FunctionType] One should add a new entry to a Ordered
LIST in a different manner than one uses to add a value to an Unordered SET.
(In the first case, multiple occurances of an element are acceptable; which is NOT
true in the second case.) This information is contained in the function stored in
F:FnForAdding . Note it is used by the various Add ing functions ~ such as the one
employed to add a new entry to the existing value of a unit's slot.

FnForDeleting - [FSingleton FunctionType] There are different ways of deleting an
element from a list, versus from a set. As with FfnForAdding , this information is
stored in F:MnForDeleting , where F is the name of a [ormat.

FormatCharacter - [FSet NonNILType] This holds a list of specifications for some
format. It is not currently used for anything but show.

FnForGetting - |FSingleton FunctionType] This is used to determine the value of a
special slot value, to be returned when GetValue requests its value.

FnForPutting - [FSingleton FunctionType] This indicates how to put a value. It is
basically used for indirect pointers.

FnForKilling - [FSingleton FunctionType| To handle indirect pointers using the *Do*

special slot values, one needs assistance to describe how to perform various manipula-
tions - such as deleting a full slot's value. This information is kept in YF:FnForKilling
, where YF is a value format.

FnForVerifyingAll - [FSingleton FunctionType| This is used, in conjunction with the
various verifying functions associated with each datatype, to build the function stored
in the VerifyValue slot of each slot. It indicates how to verify that a full entry
is correct, given, (among other arguments,) the predicate to apply to each entry
individually.

FnForVerifyingElement - [FSingleton FunctionType] This is used to verify that a single
element is correct. (Perhaps this isn’t used anymore - I must look into this.)

AnySlotFormat (14) - Descendants are used in type specifications, for processes (which
include functions and slots) .
SuperClass: AnyFormat
Direct Examples: FSingleton FList FSet FOrderedSet FBag FListN

AnyValueFormat (15) - Descendants are used in a *Do* special slot value format. This
has applications as indirect pointers, as well as to put epistemological marks on some

value.
SuperClass: AnyFormat
SubClass: AnylindirectPtrFormat
Direct Examples: FOneOf FExecute

R

E-8 Appendix E: Special Units

AnylIndirectPtrFormat (16) - These are used to deal with subunits, and other places
where much data is stored at another location - other than U:S .
SuperClass: AnyValueFormat

Direct Examples: FSeeUnit FSeeSiot FSeeU&S

AnyClassOfQbjects (17) - Every member of this class is itsell a ses.
SuperClass: AnyCT&U
There are currently 47 examples.
The following slots are defined for all *“ClassO{Objects’s:
TypicalEzample - |[FSingleton (UnitType (*P AnyArchetype))] This points from a class
to an abstract entity which hoids default information about members of this class.
Inverse: TypicalExampleQf
DomainOf - [FSet (UnitType (*P AnyFunction))] If a function takes one or more
elements of this class, as arguments, that function is stored on the DomainQOf slot
of the unit representing that class.
Inverse: Domain
RangeO/ - [FSet (UnitType (*P AnyFunction))| I a function maps into this class (or a
space having this class as one dimension,) that function is stored on the RangeOf
slot of the unit representing that class.
Inverse: Range
IntensionalEzamples - [FSet UnitTypej These examples are all intentional objects -
that is, they are only defined intentionally.
StdEzamples - (FSet UnitType| This slot basically represents the vanilla €™ relation-
ship, between an exiensional object, and a represented set.
SuperClass - [FSet (UnitType (*P AnyClassOfObjects))] This points from a class, C, to
each superset of C, D;. That is, x €C => x €Dy, for all elements x, and all sets,
Dy .
Inverse: SubClass
SubClass ~ [FSet UnitType] This points {rom a class, C, to each subset of C.
Inverse: SuperClass
UnitEzamples - [FSet UnitType] This points from a class to each member of that clats.
(Both constant and variable.)

Inverse: Isa
HighLevelDefn: (Unjoning IntensionalExamples StdExamples)

TotalSoFar - [FSingleton IntegerType] Fill in later.
SuperClass * ~ |[FSet UnitType| A list of a unit's SuperClass, THEIR SuperClass, ete.

Appendix E: Special Uaits E-9

Inverse: SubClass*
HighLevelDefn: (Starring SuperClass)

SubClass * - [FSet UnitType| A list of a unit's SubClass, THEIR SubClass, etc.
Inverse: - SuperClass*
HighLeveiDefn: (Starring SubClass)

AllEzamples - [FSet UnitType] This points from a class to a list of members of this
class. (UnitEzamples only pointed to elements immediately a member of some set
— this will follow their SuperClass links as well, to more accurately represent an
“€” relation.)
Inverse: Alilsas
HighLevelDefn: (Composition UnitExamples SubClass*)

GenlsModels - [FSet (UnitType (*P AnyArchetype))] This is used for several of the
inheritances. The prototypes of every example of some class include that class’s
Genls Models .

HighLevelDeln: (Composition TypicalExample SuperClass*)

AnyDecomposableObjeet (18) - Descendants of this are real world entities which consist
of several subparts; and which are little more than the union of such pieces.

SuperClass: AnyCT&U
SubClass: AnyActionSequence
The following slots are defined for all 'DecomposableObject’s:
ComposedOf - [FSet NonNILType] This points to a list of the parts associated with
this entity.

AnyActionSequence (19) - Any compound action, composed a sequence of subactions,
descends {rom this unit.
SuperClass: AnyAction AnyDecomposableQbject
The following slots are defined for all ‘‘ActionSequence’’s:
SubActions - [FList NonNILType] Each action may be broken into a series of substeps
- each of which is a “subaction”.

Anylnheritance (20) - Al modes of inheritance will descend from here. Associated with

each instance of an inheritance is a means for creating new units, and constraints on
properties these units may acquire. (and maybe other things...)
SuperClass: AnyCT&U
Direct Exampies: IExamples ISubClass ITypEx
The following slots are defined for all “Inheritance's:

E-10 Appendix E: Special Units

UseToGetSlots ~ [FSingleton NonNILType] This points to a high level definition of
a function which is takes the parent units, and returns a list of units whose NewPosssbleSlots
slot together hold the slota which should be initialized in this new offspring.
GetPossibleSlotaFn - |[FSingleton SlotType| This points a unit which represents a func-
" tion, which takes the units found using the UseToGetSlots function mentioned
above, and returns a list of values with which to initialise a new unit. Each entry
in this ordered list is a triple, consisting of the name of the slot, followed by the
location of the relevant initializing function, and the typical example in which this

slot was found.
Inverse: UsedByInheritance

AnyOverhead (21) - Miscellaneous information needed by CORLL, etc., is stored on
units which descend from here.
SuperClass: AnyCT&U
SubClass: AnyStatus

AnyStatus (22) - This will father all *.STATUS units
SuperClass: AnyQOverhead
Direct Examples: RLL.STATUS
The following slots are defined for all "Status’s:

KBsVARS - [FSingleton NonNILType] This names a variable, whose value lists the
variables associated with this Knowledge Base.

KBsConnectedTo ~ [FSet (UnitType (*P AnyStatus))] The value of <kb>.STATUS:KBsConnectedT
is a list of other status units, which were resident in core the last time this Knowledge
Base, <kb>, was used. It is reset whenever a new Knowledge Base is read in, or
whenever one is disconnected or reconnected.

Inverse: KBsConnectedTo .

OpenDate - [FSingleton StringType| This holds the time stamp when this Knowledge
Base was openned - i.e. the start of this session.

NetworkStatus ~ [FSingieton NonNILType] This stores the last person to use this
Knowledge Base, and when that last use was,

WhenOpeningNetwork - |[FSingleton UnrestrictedType] This points to a list of functions
which CORLL calls when openning this Knowledge Base. Each takes two arguments
- the first is the name of this KB, and the second is passed from WhenOpenningNetworks
, serves to suppress questions and messages.

LoadFiles - [FSet NonNILType| This lists the files which CORLL will read in whenever
it opens this network. It will also ask if it should MAKEFILE these when this
Knowledge Base is closed. '

Appendix E: Special Units E-11

KBsFNS - |[FSingleton NonNILType] This points to a variable whose value lists the
functions relevant to this Knowledge Base.

WhenWritingNetwork - [FSingleton NonNILType] This points to a list of functions
which CORLL calls when writing out this Knowledge Base. Each takes two argu-

ments — the first is the name of this KB, and the second is passed f[rom WhenWritingNetworks

, serves to suppress questions and messages.

Networks - [FSet KBType| Each Knowledge Base may depend, hierarchically, on the
presence of other knowledge bases, in core. The KB:s <kb> requires are listed in
<kb>.STATUS:Networks .

KBsUnitIndez - [FSingleton NonNILType] This points to the unit which holds the unit
index CORLL uses for this Knowledge Base.

KBsFreeBlockindez - |FSingleton NonNILType| This points to the unit which holds
the [ree block index CORLL uses for this Knowledge Base.

Dependent Networks - [FSet KBType] This lists the Knowledge Bases which rely on the
presence of this Knowledge Base to operate.

AnyProcess (29) - Every action which takes place, in LISP, is a Process . This cor-
responds to each function in LISP.
SuperClass: AnyCT&U
SubClass: AnyAction AnyFunction AnyUnitListProcess
The following slots are defined for all ‘Process'’s:
CVUsedBy - |[FSet FunctionType] Having x in y:CVUsedBy means x 3 cached-value
should be updated whenever y s cached-value changes.
Inverse: [UseCVO!
DefnUsedBy - [FSet FunctionType] Having x in y:DefnUsedBy means x s defn, and
maybe its previously stored values, should be updated whenever y s defn changes
Inverse: [UseDefnOf
IUseCVOf - [NotAFormat NotARange] Having y in x:/UseCVO/ means if the y stored
value of some 5 should change, some x value may change as well.
Inverse: CVUsedBy
HighLevelDeln: (Apply*ingFn GetAllCVs HighLevelDefn)

IUseDefnOf -~ [NotAFormat NotARange] Having y in x:/UseDe/nOf means x s defn,
and maybe its previously stored values, should be updated whenever y s defn changes
Inverse: DefnUsedBy
HighLevelDefn: (Apply*ingFn GetAllFNS HighLevelDe{n)

LispFn - [FSingleton FunctionType] The actual compiled code LISP will run, to process
a process, is stored here.

O O -

E-12 Appendix E: Special Units

HighLevelDefn: (OneOf LispFnForSlot LispFnForStoredFn)

-HowToProcess - {FSingleton FunctionType] This will soon be deleted, in favor of LispFn.

WhatToProcess - [FSet UnrestrictedType| Fill in later.
HighLevelDefn: (OneOf TaskList RuleList)

VerifyArgs - |[FSingleton FunctionType| The value of F:VerifyArgs is a function which
is true il its argument is acceptable as input to the function represented by F .

AnyAction (2f) - This includes any activity carried out in the real world by physical

objects.
SuperClass: AnyProcess
SubClass: AnyActionSequence

Direct Examples: DescribeUnit
The following slots are defined for all "Action"s:
SpecAct - |[FSet UnitType] This points to “refinements” of this action ~ i.e. activities
which are more precisely specified.
Inverse: GenlAct
GenlAct - |[FSet UnitType] This points to actions which are more general (i.e. at a
higher level of abstraction) than the action encoded by this unit. E.g. Locomotions
€Walkiag :GenlAct .
Inverse: SpecAct

SpecAct* ~ [FSet UnitType] A list of a unit's SpecAct, THEIR SpecAct, etec.

Inverse: GenlAct*
HighLevelDefn: (Starring SpecAct)

GenlAct* - [FSet UnitType] A list of a unit's GenlAct, THEIR GenlAct, etc.
Inverse: SpecAct*
HighlL.evelDeln: (Starring GenlAct)

AnyFunction (25) - Functions are distinquished from processes in that the primary
purpose of a function is to return a value. Note a process may be run, in effect, for
some side effect. (Yes, this is NOT pure LISP.)

SuperClass: AnyProcess
SubClass: AnyFunctional AnyPredicate AnyStorableFn AnyUnitListFn
The following slots are defined for cll ‘Function’’s:

SlotsUsedInBuilding - [FSet SlotType] Lists the slots which this one contributes to
defining.

Inverse: AlISBF

R

Appendix E: Special Units E-13

HighLevelDe/n - [FSingleton NonNILType| Here is stored a High Level Specification of
the code to be run. This can be "parsed” into a piece of LISP code, which LISP can
execute. Ideally, the information here should be sufficient to fully specily a function.

DataRange - |[FSingleton NonNILType] The value of F:DataRange is used by the
range interpreter associated with D , the Datatype of the function 8 , to generate a
function capable of deciding whether a value is acceptable or not.

Datatype - [FSet (UnitType (*P AnyDatatype))| S:Datatype points to the list of units
in the range of the function, F . '

Inverse: IsTypeOf

Format ~ |[FSingleton (UnitType (*P AnyFormat))] This stores the format of the result
this function is expected to return.

FunctionCharacter - [FSet NonNILType| This holds facts which serve to describe this
function. It is not currently used.

Defn - [FSingleton FunctionType| This lunction must take in a slot name s and return a
function capable of reading/computing s in general. Ultimately, Defn:Defn should

have a self-compiling call placed ir each value it returns.
HighLevelDeln: (Apply*ingFn CAR FunctionSpec)

Definition - [FSingleton NonNILType] This is not currently used; and may be mean-
ingless.
Domain - [FSet (UnitType (*P AnyClassOfObjects))] This points to units, each of which
represent a class in the domain of this function.
Inverse: DomainOf
Range - [FSet (UnitType (*P AnyClassO[Objects))] This points to units, which each
represent a class in the range of this function.
Inverse: RangeOf
IsBuiltFrom - [NotAFormat NotARange| Appears in unit X, for a type of slot, and lists

the old things out of which X has been defined
HighLevelDeln: (Apply*ingFn AliButHead HighLevelDeln)

UnitsBuiltFrom - [NotAFormat NonNILType| This is going away soon.
Inverse: UsedInBuilding
HighLevelDefn: (Subsetting IsBuiltFrom Unitp)

UsingFunctionals - [NotAFormat NotARange] Appears as a slot in unit X, and tells
how X was defined out of other slots

Inverse: CombinerFor
HighLevelDefn: (Subsetting UsingFunctions (MemberOf Alllsas AnyFunctional))

E-1 Appendix E: Special Units

SlotsBusltFrom - [NotAFormat NoaNILType| Fill in later.
Inverse: SlotsUsedInBuilding ‘
HighLevelDefn: (Subsetting UnitsBuiltFrom (MemberOf Allisas AnySlot))

UsingFunctions - [NotAFormat NotARange] Appears as a slot in unit X, and tells how
X was defined out of other slots
HighLeveiDefn: (Apply*ingFn OnlyHead HighLevelDefn)

PreConditions - [FSet NonNILType| Fill in later.

DomainType ~ [FList NonNILType] This holds a type specification indicating the domain
over which this function is defined.

RangeType - [FList NonNILType| This holds a type specificiation, indicating the range
into which this funcsion will map.

AnyFunctional (26) - Each descendant unit represents a function whose range is a space
of functions.
SuperClass: AnyFunction
SubClass: AnyLogicalOp AnySlotCombiner
Direct Examples: ApplyToEach Apply*ingFn ApplyingF'n MemberOf
The following slots are dzfined for all '‘Functional's:

GetCViUsed ~ [FSingleton FunctionType] The value of SC:GetCViUsed is a lunction
which, when applied to a high level defn, HLDeln, returns a list of storable functions
on whose cached values this HLDeln depends. (SC is the CAR of that HLDefn.)
This computed function can then be stored on the function S, which wiil usually be
a slot,

GetFnsUsed - |[FSingleton FunctionType] The value of SC:GetFnsUsed is a function
which, when applied to a high level defn, HLDeln, returns a list of functions on
whose definition this HLDeln depends. This can then be stored on the function S,
which will usually be a slot.

CombinerFor - [FSet (UnitType (*P AnyFunction))] This slot appears in a unit X for a
type of functions, and lists those slots which are defined out of old ones by using X

Inverse: UsingFunctionals '

ToParseParts - |[FSingleton FunctionType| This value is used by each Slot Combiner to
parse its list of arguments.

AnyLogicalOp (27 - Fill in later.

SuperClass: AnyFunctional
Direct Examples: L-Optional L-NOT L-OR

Appendix E: Special Units E-18

AnySlotCombiner (28) - An operator which takes some old slots and defines a new one
out of them.
SuperClass: AnySlotListFn AnyFunctional
Direct Examples: Donelndirectly Listing PutInOtder Soften OneOf Plussing OrderedUnioning
Unioning OrderedComposition OrderedStarring Composition Application
Starring FirstOk Intersecting CommonXProd Subsetting

The following slots are defined [or all ‘SlotCombiner's:

FnForinverting - [FSingleton FunctionType] To find the inverse of a slot, one can
examine the high level definition of that slot, and attempt to invert that. The
FnForinverting slot of a slot combiner, SC, is a function which takes as an argument
a high level definition, and returns the high level definition of a slot which computes
the inverse functions from the original slot.

FnForUpdating - |FSingleton FunctionType] When a new value is placed in a slot,
several other siots in the Knowledge Base must be updated. Such updates are
performed by executing the code stored in the KBUpates slot of this slot. The
FnForUpdating slot of a slot combiner is used to compute this KBUpdates . It
takes a high level definition as its argument, with this particular slot combiner as
principle slot combiner, and returns, essentially, the value for the KBUpdates slot
for this slot (defined by that high level definition) .

FnForCaching - [FSingleton FunctionType| After the value of a slot has been computed
(using the slot's definition,) RLL then considers storing that value away. Each
slot combiner suggests an appropriate algorithm for deciding whether to store such
values, and where. That procedure is encoded in the FnForCaching slot of the slot
combiner. (This function takes a high level definition as an argument, and returns
a function to fill the ToCache slot of a slot.)

AnyPredicate (29) - These functions return a value which is used as a Boolean - i.e.
they serve to intensionally define a set.
SuperClass: AnyFunction

AnyStorableF'n (30) - This class contains those functions whose value, on some input,
might be stored, (or cached,) away. Note at least one of the arguments must be a

unit.
SuperClass: AnyFunction
SubClass: AnyUnitListFn

The [ollowing slots are defined for all 'StorableFn''s:

ToCache - [FSingleton FunctionType] The function stored here is called after a value
has been calculated. This function then decides whether to store this value for future
use, and if so, where.

-~ “-—_—'—?——"—_——!'1

E-16 ’ Appendix E: Special Units

StoredAList — [FSet (FSet UnrestrictedType)] This stores some i/o pairs for this func-
tion, as an association list. ‘

LispFnForStoredFn - [FSingleton FunctionType] This function, used as the value for
LispFn , does the following: First try to find the value by looking it up. If that fails,
compute it; and consider caching the results. Of course, then return the computed
(or retrieved) value.

Tolnvalidate - [FSingleton FunctionType| The function stored here is used when some
cached value is to be discarded.

ToConfirmValue - [FSingleton FunctionType] When retrieving a potential value for
some input data, the predicate stored on this function’s ToConfirmValue slot is
used to see il this value is valid.

ToLookUp - [FSingleton FunctionType] The value of this slot is a function, which
attemnpts Lo retrieve a cached value of this function.

AnyUnitListFn (81) - Here will be any mapping which takes, as an argument, one or

more units
SuperClass: AnyStorableF'n AnyFunction
SubClass: AnySlotGetter AnySlotListFn AnyUnitFunction

AnySlotGetter (92) - Examples are the units used to get the list of slot types which new
units, created using some inheritance mechanism, should have.
SuperClasas: AnyUnitListFn
Direct Examples: PossibleSlotsOfISubClass PossibleSlotsOfITypEx PossibleSlots OfTExamples

AnySlotListFn (38) - Descendants are functions which takes one or more slots as

arguments.
SuperClass: AnyUnitListFn
SubClass: AnySlotCombiner

AnyUnitFunction (34) - Descendants each represent a mapping which takes, as an
argument, a unit.
SuperClass: AnyUnitListFn
SubClass: AnySELFSlot AnySlot
Direct Examples: FunctionSpec MyKB
The following slots are defined for all 'UnitFunction’’s:
HandDoneSBF - [FSet SlotType| This is used to enter the names of slots (ot, in general,
functions,) which current slot was built from.

UsingSlotCombiners ~ [NotAFormat NotARange] Appears as a slot in unit X, and tells
how X was defined out of other slots

Appendix E: Speeial Units E-17

HighLevelDefn: (Subsetting UsingFunctionals (MemberOf Alllsas AnySlotCombiner))

AfterGetValue - |[FSingleton FunctionType| The value of S:A fterGetValue is a function
which is applied to a unit U the § and the value U:S, after determining this value.

Any final test to be made, can be done here.
ToGetValue - |[FSingleton FunctionType] The function stored on a function’s ToGet Value
is invoked when one requests x:5 .
LispFnForSlot - [FSingleton FunctionType| The value of 8:Lispfn is a function, which,
when applied to a unit, U, returns the value of U:S .
AllSBF - |FFSet SlotType] This stands for All Slots Built From . It is used to hoid the
set of all slots which aflect this one - that is, x:S§ may have to be invalidated if the
y slot of some unit is changed, whenever y €S:AlISBF .
Inverse: SlotsUsedInBuilding
HighLevelDeln: (Unioning SlotsBuiltFrom HandDoneSBF)

BeforeGetValue ~ [FSingieton FunctionType| The value of S:BeforeGetValue is a func-

tion which is applied to a urit U and a S, and returns nonNIL if these arguments
. are appropriate.
¥ ActualGetValue - [FSingleton FunctionType] The value of S:ActualGetValue is a func-
l tion which is applied to a unit U and a S, and returns acutally does the retrieval
i of the vaue of U:S.

AnySELFSlot {35) - Descendants of this are the oft-spoken syntactic slots. That is,
't they each refer to this unit, qua unit, rather than what this unit represents. See

AnyCT&U and AnyAT&U to understand this hackery.
SuperClass: AnyUnitFunction
There are currently 9 examples.
The following slots are defined for all “SELFSlot"s:
StoredInTypAs - |FSingleton SlotType] This points to slot which holds the inheritable
value in typical example units.
Inverse: StandsForSlot

AnySlot (36) - Every function which takes a unit as an argument, and which MAY BE
STORED ON THAT UNIT, is a slot; and descends {rom AnySlot .
SuperClass: AnyUnitFunction
SubClass: AnyComputableSlot AnyField AnyInheritableSiot AnyPrimitiveSlot
The [ollowing slots are defined for all ‘Slot'’s:
ComputcWhenFilled - [FSet SlotType] Whenever a new value fills U:S, the value of 8:7
should be recomputed for each T €S:ComputeWhenFilled .

E.18 Appendix E: Special Units

IsEssentialFor — [FSet UnitType] Some virtual slots must be stored on a unit for
bootstrapping reasons. S:JsEssentialFor holds a list of units which require this

S slot.
Inverse: MyEssentialVirtualSlots

Inverse — [FSingleton SlotType| Stating S is the Inverse of a T means x €y:S iff y

€x:T. The € relation means a =b if b is a singleton, otherwise a is in the list, b.
Inverse: Inverse
SuperSlot ~ [FSet SlotType| Stating SS is a SuperSlot of S means the value of x:5
will be a subset of the value of x:55, lor all x in their common range.
Inverse: SubSlot
SubSlot ~ [FSet UnitType] This is the inverse of SuperSiot .
Inverse: SuperSlot

MakesSenseFor - [FSet (UnitType (*P AnyArchetype))] A given slot, S, may only be
defined for certain particular units. S:MakesSenseFor points to a list of typical-
example units. This $ slot makes sense for each instance of each such unit.

Inverse: NewPossibleSlots

ToPutValue - [FSingleton FunctionType] The function stared on S:ToPutValue is called
whenever putting a new value onto U:S .

Tolnstialize - [FSingleton FunctionType] When creating a new unit, all of the existing
inheritance mechanisms first gather a collection of slots, which are meaningful to
this new unit. Each slot, 8 , is then asked for its S:To/nitialize function, which
is then run. It is the responsibility of this funciion to actually store an appropriate
value on this new unit.

SuperSlot* - [FSet UnitType] A list of a unit's Supe:Slot, THEIR SuperSiot, etc.

Inverse: SubSlot*
HighLevelDefn: (Starring SuperSlot)
SubSlot* — [FSet UnitType] A list of a unit’s SubSlot, THEIR SubSlot, etc.
Inverse: SuperSlot*
HighLevelDeln: (Starring SubSiot)

ToAddValue ~ |[FSingleton FunctionType] Whenever one wishes to add one a value to

the current value of U:S, the function stored on S:ToAddValue is called.

ToDeleteValue - {FSingleton FunctionType] Whenever one wants to delete a value from
the list of values stored on U:S, the function stored on S:ToDeleteValue is called.

ToSubstValue - [FSingleton FunctionType] Whenever one wants to substitute one value
for another, on the list of values stored on U:S, the function stored on S:ToSubstValue
is called.

— e ek o

Appendix E: Speeial Units E-19

KBUpdates - [FSingleton FunctionType] Whenever a value is stored in a slot, various
changed must be made throughout the Knowledge Bases, for truth maintanence
reasons. A function designed to perform such modifications is stored in the KBUpdates
slot of each siot. S:KBUpdates is called whenever the value of x:S is changed.

This KBUpdates is calculated using the FnForUpdating slots of the various Slot

Combiners used to define this S slot.

Vers fyAll - [FSingleton FunctionType| Before accepting a value for storage on U:S, it is
tested for acceptability. This is done by calling S:VerifyAll on this proposed value.

VerifyElement - [FSingleton FunctionType] When adding a new value to a slot's existing
value, or substituting one value for another, it is often costly, and unnecessary, to
check all of the values for acceptability. To verily the validity of one value, the
function stored on S:VerifyElement is called on that proposed new element.

OrderForTolnit - [FSingieton IntegerType] Each slot will have a value, stored here,
which indicates at what time its Tolnitialize function should be invoked when a new
unit is being created. It may use the global variables: uParent, ulnheritance, and
uAlllnheritantedSlots, to make its decision.

ActualPutValue - |[FSingleton FunctionType| The value of S:Actual{PutValue is a func-
tion which is applied to a unit U, a §, and a value V, actually stores V on U:S

ActualAddValue - [FSingleton FunctionType| The value of S:ActualAddValue is a func-
tion which is applied to a unit U a S, and a value V, and returns actually does the
addition of the value V to the U:S.

ActualDeleteValue ~ [FSingleton FunctionType] The value of S:ActualDeleteValue is a
function which is applied to a unit U a §, and a value V, and returns actually does
the deletion of the value V from the U:S.

ActualSubstValue - [FSingleton FunctionType] The value of S:ActualSubstValue is a
function which is applied to a unit U a S, and values V and W, and returns actually
does the substitution of the value W lor the value V in the U:S.

AnyComputableSlot (37) - These slots are redundant, as they could have been com-
puted from other, more basic slots. (Modulo Garden-Of-Eden conditions. See
MyEssentialVirtualSlots .)

SuperClass: AnySlot
There are currently 72 examples.

AnyFicld (38) - Slots on sub-units (that is, units devoted to storing the value of a slot
of a given unit,) are called fields. Those “slots® which appear only in this context
are stored under AnyField .

SuperClass: AnySlot
Direct Examples: *vaLue* LivesInLocation LivesInSlot LivesInUnit

E-20 Appendix E: Special Units

AnylnheritableSlot (39) - Descendants of this class are slots whose value may be inherited
from some prototype of the unit in question. Or course, if there is a value stered on
that unit, that value will be used.

SuperClass: AnySlot
SubClass: AnyAccessSlot AnyFormatFnSlot
Direct Examples: ToLookUp ToConfirmValue OrderForTolnit

AnyAccessSlot (40) - Descendant of this AnyAecessSlot are slots used to manipulate
the units themselves. For efficiency, they all use the same fast retrieval mechanism
to determine their respective values - GetAccessin .
SuperClass: AnylnheritableSlot
Direct Examples: Tolnvalidate ActualSubstValue ActualDeleteValue ActualAddValue
- - ActualGetValue ActualPutValue ToGetValue BeforeGetValue AfterGetValue
! ToPutValue BeforePutValue AflerPutValue ToAddValue ToDeleteValue
ToSubstValue Tolnitialize MyToKiillMe ToCacheField ToCache ToKillValue
MyToRenameMe

AnyFormatFnSlot (41) - Various bits of information are associated with each format.
When this information is functional, it descends {rom this AnyFormatFnSlot .

SuperClass: AnylnheritableSlot
There are currently 8 examples.

AnyPrimitiveSlot ({2) - Primitive slots, which descend from this AnyPrimitiveSlot
, cannot be computed il omitted. (As opposed to computable slots, which are
technically redundant information, as they can be computed from more basic slots.)

SuperCiass: AnySlot
SubClass: © AnySlot-Instances
There are currently 96 examples.

AnySlot-Instances (43) - Aliases used for syntactic slots are stored under AnySlot-
Instances . These are used to hold values which should be inherited from typical
example units; freeing the basic slot to hold the vaiue pertanent to this particular
unit.

SuperClass: AnyPrimitiveSlot
Direct Examples: SlotsNowOrdered-Instances SssentialVirtualSlots-Instances ToKillMe-
Instances ToRenameMe-Instances
The following slots are defined for all ‘Slot-Instances’’s:

StandsForSiot - [FSingleton SlotType] This points to the name of the syntactic siot for
which this is an alias.
Inverse: StoredInTypAs

Appendix E: Special Units E-21

AnyUnitListProcess (44) - These processes take one or more units (amoung possibly
other things) are arguments.
SuperClass: AnyProcess
SubClass: AnyUnitProcess

AnyUnitProcess (45) - These processes take a single unit as its argument.
SuperClass: AnyUnitListProcess
Direct Examples: EditUnit

ApyUnit (46) - Examples will be things which REPRESENT units... NOTE: this does
NOT include every unit automatically! (In fact, most units represent some real world
object, such as Tree#32, or some conceptual entity, such as Red, or Function#412.)

SuperClass: Anything
The following slots are defined for all “Unit"'s:

MyCreatedAs - [FListN (UnitType (*P Anylnheritance)) (FList UnitType)] This stores
inheritance informaticn about this unit - indicating, for example, that it was created
as an IExamples (read “Example”) of AnySlot .

MyEssentialVirtualSlots - [FSet SlotType] These slots are essential for the Garden of
Eden RLL system. Therefore RemoveVirtualSlots is smart enough to know NOT
to remove these slots (i.e. those which MyEssentialVirtualSlots points to) from a
unit.

Inverse: IsEssentialFor

MyTimeO [Creation - [FSingleton StringType] This records when this unit was created.

MyCreator - [FSingleton StringType] This names the user who created this unit.

MyToKiliMe - |[FSingleton FunctionType| This function is called when deleting this
unit.

MySlots NowOrdered - [FSet SlotType] This lists the names of slots which are currently
in the correct order. (For example, OrderedPrototypes appears in some unit's
MyEssentialVirtualSiots only when the typical example units stored in Prototypes
have been arranged in the correct order.)

MySensibleSlots - [FSet SiotType] Only certain slots are defined for a given unit. This
list is stored in that unit's MySenssbleSlots .

HighLevelDeln: (Composition NewPossibleSlots Prototypes)

MySlots ~ [FSet SlotType] This never cached slot returns the list of slots belonging to
this unit.

Inverse: AmUsedIn

MyToRenameMe ~ |FSingleton FunctionType] This function is called when renaming
this unit to another name.

E-22 Appendix E: Special Units

AnyUser (47) - RLL tries to hold some primitive information about each user of this
system. A unit is devoted to each user, (as well as each recognised user class) ; and

this information is under AnyUser .
SuperClass: AnyCT&U
SubClass: AnyHacker
Direct Exampies: AndyFreeman LarryHines
The following slots are defined for all “User''s:

InformalName - |[FSingleton StringType| This is a name RLL can use to greet this
user.

UsualKBs - |[FSet KBType] These are the Knowledge Bases this user usually wants
loaded in.

WrstingOptions — [FList NonNILT ypej When closing a Knowledge Base, RLL must ask
the user several questions. To sidesiep this tedious (and often unneccessary) process,
the user can indicate a fixed set of responses to such inquires; which are stored on
this WritingOptions siot. When closing the K3s, the user is now asked a single
question ~ il he wishes to use these. (Answering No forces RLL to ask him these
questions one by one.)

The defaulted writing functicn, StandardFinishUp , asks if virtual slots should be
removed, if this KB should be disconnected [rom the others, and if this K3 should be
diagnosed; in that order. Setting WritingOptions to (Y N Y) instructs RLL to remove
virtual slots, and diagnose the KB, but not to disconnect it.

OpenningOptions ~ [FList UnrestrictedType] Like WritingOptions , this helps the user
to avoid a potentially dull task. The value stored here will be handed to the function
called when openning each knowledge base; if the user indicates he wishes his default
setting to be used.

The only question StandardStartUp might ask is whethr to reconnect an enterring
knowledge base. Setting the OpenningOptions slot to (NIL) means this question wiil
be asked each time,

User Nemes ~ [FSet StringType] This lists the system names this user may go by. (Ie
values of (USERNAME) which correspond to this person.)

AnyHacker (48) - This class includes people werking ¢a RLL.
SuperClass: AnyUser
Direct Examples: Douglenat RussGreines

AnyConcreteThing (49) - Instances refer to tangible objects, (such as trees,) as opposed

to abstract things (such as variables) .
SuperClass: Anything

Appendix E: Special Units E-23

E.4: INDEX of UNITS.
For indexing purposes, the classes shown in Section E.3 were numbered sequentially.
This value is used in the index below, to indicate in which class each of these units
(representing classes, their examples and significant slots) belong.

vaLue(Slot) 38,6 AnyFormatFaoSlot (Class) . . 41

ActualAddValue (Slot) . . . 40,36 AnyFunetion {Class) 25

ActualDeleteValue (Slot) . . 40,36 AnyFunctional {(Class) . . . 26

ActuaiGetValue (Slot) . . . 40,34 AnyHacker (Class) 48

ActualPutValue (Slot) . . . 40,36 AnylndirectPtrFormat (Class) 16

ActualSubstValue (Slot) . . 40,36 AnylnheritableSlot (Class) . . 39

AfterGetValue (Slot) . . . 40,34 Anylnheritance {Class) . . . 20

AfterPutValue 40 AnylntensionalObject (Class) . . 3

AllEzamples (Slot) 17 AnyLogicalOp (Class) . . . 27

AllGenis (Slot) 1 AnyOverbead [Class) 21 :

Alllsas (Slot) 1 AnyPartialSpee (Class) 8 ;‘
{ AlISBF (Slot) 34 AnyPredicate (Class) 29 |
| AllSpecs (Slot) 1 AnyPrimitiveSlot (Class) . . 42 |

AndyFreeman 47 AnyProcess (Class) 23 |

AnySELFSlot {Class) 35 AnySlot {Class) 36 |

AnyAT&U (Class) 2 AnySlot-Instances (Class) . . 43 }

AnyAbstractThing (Class) . . . 9 AnySlotCombiner (Class) . . 28

AnyAccessSlot (Class) 40 AnySlotFormat (Class) . . . 14

AnyAction (Class) 24 AnySiotGetter (Class) . . . 32]

AnyActionScquence (Class) . . 19 AnySlotListFn (Class) . . . 33 |

AnyArchetype (Class) 4 AnyStatus (Class) 22

AnyCT&U (Class) 10 AnyStorableFn (Class) . . . 30

AnyCharacteristic (Class) . . 11 AnyUnit {Class) 46

ApyClassOfObjects (Class) . 17,1 AnyUnitForSlot (Class) 6

AnyComputableSlot (Class) . 37 AnyUnitFunction (Class) . . 34]

ApyCouncreteThing (Class) . . 49 ApyUpitListFo (Class) . . . 31

AnyDatatype (Class) 12 ApyUnitListProcess {Class) . 44

AayDecomposableObject (Class) 18 AnyUnitProcess (Class) . . . 45

AnyDescriptor (Class) 5 AnyUser (Class) 47

AnyField (Class) 38 AnyValueFormat (Class) . . 15

ApyFormat (Class) 13 AnyVariable (Class) 7

E-24

Apything (Class)
Application
Apply*ingFn
ApplyToEach
ApplyingFn . . . e
BeforeGetValue (Slot) . . . 40,
BeforePutValue .
BooleanType .
CVUsedBy (Slot)

. Characteristics (Slot)
CombinerFor (Slot)
CommonXProd .
ComposedOf (Siot)
Composition . . .
ComputeWhenFilled (Slot)
DataRange (Slot) .
Datatype (Slot) .
Definition (Slot)
Defn (Slot)
DefnUsedBy (Slot)
Dependent Networks (Slot)
Descr (Slot)
DescribeUnit .
Domain (Slot)
DomainOf (Slot)
DomainType (Slot)
Donelndirectly
DouglLena}
EditUnit .
EqualDTSpec (Slot)
EssentialVirtualSlots-Instances .
FBag .
FExecute
FList .
FListN
FOneOf .
FOrderedSet
FSeeSlot . . .
FSeeU&S

......

ooooooo

oooooo

ccccc

.....

aaaaaa

ooooooo

oooooooo

Appendix E: Special Units

FSeeUnit
FSet e eae .
FSingleten
FirstOk ..
FnForAdding (Slot)
FnForCaching (Slot)
FnForDeleting (Slct)
FnForGetting (Siot)
FnForinverting (Slot) .
FnForKilling (Slot) . .
FnForPutting (Slot)
FnForUpdating (Slot) .
FnForVerifyingAll (Slot) .
FnForVerifyingElement (Slot)
Format (Slot) .
FormatCharacter (Slot)
FunctionCharacter (Slot)
FunctionSpee

FunctionType .
GenerateAil (Slot)

GenlAct (Slot)
GenlAct” (Slot)

Genls Models (Slot) . .
GetCViUsed (Slot)

GetFnsUsed (Slot)
GetPossibleSiotsFn (Siot)
HandDoneSBF (Slot) .
HighlevelDefn (Slot) .
HowToProcess (Slot)
[Examples
ISubClass . e
ITypEx « + « . .
IUseCVO{ (Slot) . .
IUseDefnOf (Slot)
InformalName (Slot) . . .
IntegerType . .
In.ennonaIEzamplc: (Slot)
Intersecting
Inverse (Slot)

ooooooo

14
14
28
13
28
13
13
28
13
13
28
13
13
25
13
25
34
12
12
24
24
17
26
26
20
34
25
23
20
20
20
23
23
47

17
28

Appendix E: Special Units

IsBusitFrom (Slot) oo . 25
IsEssentialFor {Slot) 36
IsTypeOf (Stot) 12

Isa (Slot) I |
KBType. 12
KBUpdates (Slot) 36
KBsConnectedTo (Slot) . . . 22
KBsFNS(Slot) 22
KBsFreeBlockIndez (Slot) . . 22
KBsUnitindez (Slot) 22
KEBsVARS (Slot) 22
L-NOT 27
L-OR 27
L-Optional 27
LarryHines e e e e 47
LispFn (Slot) 23

LispFnForSlot (Slot) 34
LispFnForStoredfn (Siot) . . 30

Listing 28
LivesinLocation 38
LivesInSlot 38
LivesInUnit 38
LoadFiles (Slot) 22

MakesSenseFor (Slot) 36

MemberOf 26
MyCreatedAs (Slot) 46
MyCreator{Slot) 46
MyEssentialVirtualSlots (Slot) 46
MyKB 34
MyRe[ineSlots (Slot) 8
MySensibleSlots (Slot) 46
MySiots (Slot) 46

MySlots NowOrdered (Slot) . . 46
MyTimeO fCreation (Slot) . . 4§
MyToKillMe (Slot) 46,40
MyToRenameMe (Slot) 46,40

NetworkStatus (Slot) 22
Networks (Slot)
NewPossibleSlots (Slot) 4

NonNILType 12
NumberType 12
OneOf 28
OpenDate(Slot) 22
OpenningOptions (Slot) . . . 47
OrderForTolnit (Slot) . . . 39,36
OrderedComposition 28
OrderedPrototypes (Slot) . . . 1
OrderedStarring 28
OrderedUnioning 28
Plussing 28
PossibleSlots (Slot) 4
PossibleSlots OfTExamples 32
PossibleSlotsOfISubClass 32
PossibleSlotsOfiTypEx 32
PreConditions (Slot) .. 25
Prototypes (Slot) 1
PutlnOrder 28
RLL.STATUS 2
Range(Slot) 25
Rangelnterpreter (Slot) . . . 12
RangeOf (Slot) 17
RangeType (Slot) 25
RussGreiner 48
SlotType 12
SlotsBuiitFrom (Slot) 25
SlotsNowOrdered-Instances . . 43
SlotsUsedInBuilding (Slot) . . 25
Soften 28
SpecAct (Slet) 24
SpecAct*(Slot) 24
Specializations (Slot) 1
StandsForSlot (Slot) 43
Starring 28
StdEzamples (Slot) 17
StoredALsst (Slot) 30
StoredInTypAs {Slot) 35
StringType R 12
SubActions (Slot) 19

E-26

SubClass (Slot) 17
SubClass*(Slot) 17
SubDT(Slot) 12
SubDT* (Slot) 12
SubSlot (Slot) 36
SubSlot*(Slot) 36
SubTypEz (Slot) 4
SubTypEz*(Slot) 4
Subsetting, .. 28
SuperClass (Slot) 17
SuperClasa® (Slot) 17
SuperDT (Slot) 12
SuperDT*(Slot) 12
SuperSlot {Slot) 36
SuperSlot* (Slot) 36
SuperTypLz (Slot) 4
SuperTypEz*(Slot) 4
ToAddValue {Slot) 40,36
ToCache (Slet) 40,20
ToCacheField 40
ToConfirmValue (Slot) . . 39,30
ToDeleteValue (Slot) 40,36
ToGetValue (Slot) 40,34
Tolnitialize (Slot) 40,36
Tolnvalidate (Slot) 40,30
ToKillMe-Instances 43
ToKillValue 40
ToLookUp (Slot) 39,30
ToParseParts (Slot) 26
ToPutValue (Slot) 40,36
ToRenameMe-Instances . . . 43
ToSubstValue (Slot) 40,36
TotalSoFar (Slot) 17
TypicelEzample (Slot) 17
TypicalEzampleOf (Slot) 4
Unioning 28
UnitEzamples (Slot) 17
UnitType 12

UnitsBuiltFrom (Slot) 25

Appendix E: Special Units

UnrestrictedType
UseToGetSlots (Slot)
User Names (Slot)

UsingFunctionals (Slot) . . .
UsingFunctions (Slot)
UsingSlotCombiners (Slot) . .
UsualKBs (Slot)
VerifyAll (Slot)
VerifyArgs (Slot)
VerifyElement (Slot)
VerifyType (Slot)
WhatToProcess (Slot)
WhenOpeningNetwork (Slot) .
WhenWritingNetwork (Slot)

WritingOptions (Slot)

12
20
47
25
25
34
47
36
23
36

23
22
22
47

F. APPENDIX - Environment

The functions most RLL-1 users will necd fit into threc basic groups. Thosc which a novice user
should know are listed first, organized by topic. These top level functions place essentially no
restriction on the nature of the knowlede base on which they are used. The next group of functions
are one level deeper, consisting of the functions required for bootstrapping RLL-1. These are listed
alphabetically. Most of these functions live in some unit, and are used by default -- i.e. unless
overwritten. The final category are utility functions, which augment LISP in useful ways.

The rest of this appendix list miscellaneous functions which have becn adviced or altered and
relevant global variables. The various functions and variables which- comprise CORLL, (see
[Smith}) may be used as well. (Recall RLL-1 is built on this unit-management system.)

These functions will, in general, return NIL only when some error has been encountered -- for
example, when the slot in question is not really a bona fide slot. Also, many of the parameters
mentioned below are optional, and serve only to speed up the functions processing, if supplied. To
indicate this distinction, each required parameter will begin with a capital lecter, while each extra
one will start with a lower case letter.

Thanks to a special "hack” made to LISP’s interpreter, many of the units can serve as functions.
Sceing (FN arg, arg, ... argy), LISP wiil first attempt to apply the functional definition of FN (i.c. the
lambda expression stored in (GETD 'FN)) to these arguments. If (GETD 'FN) is NIL. before raising an
error interrupt, LISP will then check if FN is a Process -- that is, a unit which descends from
AnyProcess. If so, and if the arguments. (arg, arg, ... arg,), arc in the domain of en, (iff (apPLY"

(Getvalue 'FN 'VerifyArgs) arg, arg, ... argy) iS NOONIL), LISP will (APPLY* (Getvalue 'FN ‘LispFn) arg, arg,
. drgy). and return that result.

As mentioned in subsection 5.5, much of the "smarts” of RLL-1 has been relegated to some unit, as
opposed to the more standard practice of simply coding it opaguely into some (set of) functions.
For example, there is no mention below of Fields, (or any other indircct pointers,) which Appendix
B.4 implied must exist. This information has been placed within the FSeeunit unit; which "knows"
how to access such values. and how to modify them. Hence we saw the value physically sicred in
the Age slot of Mary was "(*Co* FSeeUnits 39 (U4S AgeOfMaryGC01) (U4S AgeCfMary002)). (The initial
"+00*" indicates this is‘a special siot value: sce Appendix [D.4.) This particular mechanism, of using
"value formats”, has other, less epistemologically motivated uses. For example, to indicate the Coior
of George is cither Green or Red, on can put the value "(*Do* FCneCt Gree Red)” into George's Color
slot.

D.1: Top Level Functions

Overhead:

Unitp{ unit] -- Returns nonNIL iff unit is a unit, belonging to ore of the retworks currently loaded
1.

Processp(Process } -- Returns nonniL iff Process is a process which belong to one of the networks
currently loaded in. As this is often involved in the Ferifidrgs test described above, any
Knowledge Base which uses processes is expected to provide RLL-1 with such a function.
(This happens to reside in ProcessType:VerilyTyps.)

Slotp{ siot] - Like Processp, this returns nonniL iff Siot is a slot which belong to one of the
networks currently loaded in. Again, any Knowlcdge Base which uses slots is expected to
provide RLL-1 with such a function. (This happens to reside in SlotType:verityType.)

EDITUJ unit extra) - Calls the LISP aditcr on the slots and their values of this unit. They will be
arranged as a propenty list The etfect will be the same as actually performing 2
Putvalue[Unit Siot Vaiue oid extra] for each slot changed, where vawe is the new value stored in
this slot, and oid is either the value which had been there ¢r RecomputeMe.

Notes: EDiTu is an NLAMBDA, dla soiTP.

Like EP, "EU" is a LISPXMACRO, as well as a USERMACRO.

One can terminate the editting session, without performing the changes, by typing
“ABORT™. ,

Typing "P-A x y 2" will reset extra to the value (x y 2).
(P-A) resets extra to NiL. :

Eading a session with “SimplePut” will use the CORLL function UA-PUTVALUE, rather
than the full Putvalue.

DI{ unit other gepth | - Prints cut the (psuedo-) hierarchy of units, starting with the unit, umt. (If
omitted, will start from the root, called Anything.) The optional list, cther, specifies which
branches to take on the descent. As with Sietp, each Knowledge Base should supply this
function. (In this implementation,) if other includes any ot {S SutClass Specs}, ail of the
Scecializations (which is usually SubCiass) of each unit walked wiil be cxamined. Any of {7
Typ TymcaiExample} will cause Ci w print out the typical example of cach class or each unit
walked. {E exampies} both print out of the UnitExamples of each class unit walked. (By
def alt o1 will follow all of these links.) Thais will stop recur(s)ing down the tree arier (CR
deoth 1CCO) iterations.

START]] - Starts the RLL-1 system: this will load in the desired Knowiedge Bases, and pesform
other initiaiizing functions.

CetXBs[] -~ This function lcads in the RLL Knowledge Base, and then the others the user has
requested.

j Close]] -- Closes each Kaowledge Base now opea.

CANCEL[] - Cancels each Kacwledge Base now open.

CC[] -~ Asks the user whether it should Close or Cancel each Knowledge Base now open, and
does so.

' Retrieval:
Slot’s velue

GetValue[uni Stot others] -- This is RLL-1's basic get. It returns the valuc derived by applying
Siot:TcGetvalue 10 Unit. Stot and others. (The semantics of the optional third argument
depends on that stored function.) As this slot is accessible o the user, he can code
arbitrarily complex rotreival schemes. The current value of ToGetvalue:ToGetvalve S
GetAccessFn. As shown above, (in Appendix A.l, or subsection 4.3) the result of the
function call, (GetAccessFn Slot ‘ToGetvaiue), is applicd to (Unit Stot others). The value this
recurns is returned by the overall Cetvaige.

Writing:

Slot’s value

PutValue[unit Siot value oldvaiue why] - This is RLL-1's vanilla put function. It calls the function
Slot:ToPurvawe, handing it al the arguments listed above. {Recall that only the first three

arguments are required; of the others, (those beginning with a lower case lotter,) oldvalue
will be computed if it is not given and found to be neccssary.)

AddValue{ unit siot Value oldvalue why extra | -- This function is used to add a new value to the list
of entries already stored as unitsret, using the function stored on Slot:ToAdovawe. By default,
(L.c. stored on TypicalSlot:ToAadVaiue), DefauitAddvalue will be called on this argument list. The
variable "why" holds information describing why this operation was performed; and “extra®
is used to additional (non-why) data to the actual adding function. (Note Deletevaive and
Substvaiue use these same two cxtra arguments, for the same purpose.)

DeleteValue[unit Stot value oldvalue why extra] -- Like Addvaiue, this function is designed to
remove a value from the list stored on Unit:Siot, using Siot:ToDeftetevaive. DBy default, (i.e.
stored on TypicaiSiot:Tolelatevaiue), DefaultDeletevalue will be called on this argument list.

KillValue[unit siot oidvaiue why] - This removes all traces of the slot Stot from the unit umt. It

should be the same as performing a Putvaiue| Unit Stlot RecomputeMe cidvaive context why].
It actually uses the Sie:Tokiivae, which defaults to the value stored on TypicaiSlot: ToKiliVaiue,

DefauitKilivalue.

SubstValue{ unit siot Tevawe Fromvalue oidvalue why oxtra] -- This substitutes the valuc Fremvalue
with ihe value Tovalue in UnitSior. The value of SlotToSubstvawe, which defauits to

CefauitSubstvalue, may be uscd.
CacheValue[unit stot vaiue why] -~ This is the command issued which considers storiag Value on

Unit:Slet. By desault, (i.2. stcred on TypicaiSiot:ToCachevalue). SefaultSiotCacher will be called
on this argumecat list

B Manzgement:

CreateUnit] unit KnowledgeBase | -- This creates a new unit, named Unit, adding it to the
Knowledge Base, KrowledgeBase.

NewUnit{ unit inheritance ParentSet KnowledgeBase] -- This creates a new unit, named Unit. which is a
descendent of each member of the ParentSet, by the inheritance, inheritance. After some
preliminary overhead, it calls InitializeUnit, whose mechanism has yet to be “officially”
decided..

KillUnit[unit] - Delctes the unit named unit, disconnecting all of its links. (The end result
should be as if this unit had never existed.) [t really calls unitMyTokiiMe, which defaults
(when TypicalUnit is reached) to DefaultkillUnit.

RenameUnit[mewName unit KB] -- This changes the name of the unit, Unit. to be NewName, in the
Knowledge Base. kB, and propagates the cffects of this change. It rcally calls
Umit:MyToRenameme, which dcfaults (when Typicalunit is reachcd) to DefaultRenameunit. (This
will often be intercepted, by, for example, the value of TypicalCLass:MyToRenameMe.)

D.2: Functions Needed to Bootstrap RLL-1

Many of these functions reside somewhere in the RLL-1 Knowledge Base. This
information is listed below; following the list of arguments.

AddInverseLinks[unit] -- This add the inverse links (back pointers) o every link emanaiing
from unit.,

CacheIfOK[Unit Slot Value oldValue why] == Caches vaive in Unitsier only if 1sCk{ vaiue 1.

CachelfNonTrivial[unit Siot vaiue cldvaiue why] == Caches Value in Unit:sret only if 1sOk[Vaue)
and vaive does not equal (LIST Um). .

CleanWS]] -- This tells CORLL that no unit has been written out. The first call to the CORLL
function upP-puTUNIT will "dirty” the current work space; undoing this fact

CreateSlot{ HLpein k8 sv | =~ This creates a aew slot, whose high level definition is HLCetn. This
new slot will be stored in the knowledge base, k8. The user may optionally add other siots

to this new unit; thesc would bc passed as a list of dotted pairs, in the sv argument

DefaultActualAddValue [unit Siot value oidvalue why extra | -~ {TypicaiSlot: Actual lddValue}
This function actually adds on a new value, vaive, 0nto Unit:Siot, whose value is now oigvalue.
It will call on the appropriate siot format (or value format) as requirad.

DefauitActualDeleteValtie[unit Siot vaiue oldvawe wny | - {TypicaiSiot: dc:ualDeleteValue}
This actually deletes an old vaiue. [t is, in form, essentially identicai 0 DefauitActuatAauVaiue,
guided once again by SlotFormat.

DefaultActualGetValuel unit Siot others | — {TypicalSlot: AciuaiGetVaiue}
This is used to actually retrieve (and recompute. if necessary,) the value of tie stot slot cf
the unit, Unit. The others argument ccntains a list of zero or more values. which are vsed
modify his process: for efficiency reasons. The next two paragraphs will describe what
DefaultActuaiGetvaiue will do when others is NIL.

It will first use UA-GETVALUE to find if any value is physically stored on the Sice sict
of und. If that value satisfles MustRecomputep, (i.e. IS NIL, 0Or ReccmputeMe,)
DefaultActuaiGetvaiue will apply Slot:Sen to Umit and Siot. and locally stcre the result The
function Cachevaive is thea called on unit, Slet and this stored value. This function,
described below, may physically cache this value in the knowledge base. In any event that
value is the actual value of unitSiet, and wiil be used in what follows.

If Unit:sior is a special slot value, (i.e. of the form (*Do* <value-formap ..),) the value
of the FnForGetting slot of <value-formad will be called on this value, as well as Unit, Stot and
the FnforGerting slot of Slotformat. Otherwise these arguments will be handed to that
FnForGetting slot of Slot:Format. The value this call returns will be the result of this cail.

Now for the exceptions: When FAST-GET is inciuded in others, no Deins will be
tested -- and hcnce no writes will be performed into the Knowledge Base. Including noO-
CACHE means no computed values will be cached (i.e. Cachevawe will not be cailed),
although such values will be computed as necessary. "IGNCRE-CACHE" tells
DefaultActualGetvalue 10 ignore any value stored in the Slof slot, and rely on Slot:Defr. If
FAST-CACHE is included, it will be passed, as Fast-Cache, 10 that caching functicn. When
IMPURE is in that list, the global variables uvalue and uContext will be set to the value here
returned, and the unit on which this valuc was physically stored, respectively. The
remaining values arc all used to speed up runtime cxecution. NO-VALUE-FORMAT iadicatss to
return the value found, rather than call the Value Format's FnforGetting, (when that would
have been applicable).

DefaultActualPutValue[unit Stot value oldvaive why] -- {TypicalSlot: AciualPutValue}
This function performs the actual put. The specifics of how this is done depends on
whether vaiue or oldvalue has a value format, and on F, the Format slot of Siot. If both values
are unformatted, the FnForPurting associated with the unit F is called on appropriate
arguments. If cither satisfies valusFormattedp, the FaForPutting slot of that vaiue format will be

PR —

called on these argumentss, augmented with F:fnforPutting.

DefaultActualSubstValue[unt siot vaiue Moditication why | - {TypicaiSlot:. {ciualSubstValue}
This actually performs the substitute of a new value for an old one. +ithin the existing
value of a unit:Stor. The exact substituting process depends on the nature of stet (in

particular, on the value of Slot:Format).

DefaultAddValue [unit st vae oidvaiue why extra | - {TypicalSlot: To.1ddValue}

This is the default way to add a new value. Like DefaultPutvave, it will cal’
DefaultBeforePutvaive before performing this addition. (Here the value of single will be
nonNIL, and is used to indicate the nature of this altcration.) The exact adding process is
performed by OefaultActualaddvaive. [f this succeeds, DefauitatterPutvaiue is called with these
arguments.

“extra” tells whether a single value, or a list of values, are being added; and whether the
curtent value of Unitsior should be recomputed (using Siot:oetn) if it s currenty empty.

DefaultAfterGetValue [unit Siot others | - {TypicalSlot: {/lerGet Vaiue}
This is the default function ecxecuted after the actual getting within DefaultGetvalue is
performed. (DefaultGetvaiue will return NiL if this function does.) Curreaty this function
simplv returns T.

DefaultAfterPutValue [umt Siot Newvalue mogit why | == {TypicalSlot: AfierPutVaiue}
This is the default function executed after the actual putting within CefauitPutvaiue is
performed. (CetauitPutvaiue will return niL if this funcuon does.) This function s
responsible tor mainwining KB consistency, using Updateinverse and UpdateDepend as
appropriate. [t will also recompute the value of any esseatial virtual slot which was just
now deleted; and will determine the value of certain other slots in a when-fiiled manner.

DefaulrBeforeGetValue [unit Siot others | - {TvpicalSlot: BeforeGetValue}
This is the default function exccuted pefore the actual getting within CefauitGetvaive s
performed. (DetaultGetvalue will return NiL if this function dves.) Currenty tdus functicn
simply returns T.

DefuultBeforePutValue [unit siot Oldvaiue modit why] -- {TvpicalSlot: BerorePutValue}l
This is the default function exccuted before the actual putting within a CefaultPutvaive is
performed. (DefauitPutvaiue will return NiL if this function does.) Ir this value is being
enterred by the user, this function will sce if Cidvalue is an acceptable value, using (by
default) Detauitverityvalue.

DefaultDeleteClass [unit | - {TypicalClass: MyToKillMe}
This is the function used for deleting a unit which represents a class. In addition to deleting
inverse links, this attempts to reclassify every example of this set, if the uscr gives the 2o
ahead.

DeflaultDeleteSlot | umt] -~ {TypicaiSlot:MyToKillMe}
This is the function used for deleting a unit which represents a siot. In addition to deleting
inverse links. this attempts to remove every occurance of this slot. if the user gives the go
ahead.

DefaultDeleteUd4S [unit] -- {TypicalUnitForSlot: MyToKillM e}
This is the function used for deleting a unit which represents a slot's value. In addition to
deleting inverse links, this automatically rescts the value of the siot in the host unit

DefaultDeleteUnit [unit | -- {TypicalThing:MyToKillMe}
This is the default function uscd for deleting units in general. All it does is dclete inverse

links.

DefaultGetValue[unit siot cthers] -- {TypicalSiot: ToGet Value}

This is used tw retricve (and recompute, if necessary,) the value of the stet slot of the unit,
unit. The others argument contains a list of zero or more values, which are used modify this
process; for efficiency reasons. The next paragraph will describe what DefaultGetvaive will do
when athers is NiL.

After performing an initial type check on its first two arguments, DefauitGetvalue will
apply StotBeforeGetvalue to these arguments. If that returned nonnit, the function stored on
SlotActuaiGetvaiue is called. The value this call returns will be saved. Finally,
Slet:ArterGetvaiue is called on this value, Unit and Stot. [f all of these subfunctions succeed
(i.e. returned nonniL), that stored value will be returned.

Now for the exceptions: When FAST-GET is inciuded in others, the functions on
Slot:8aforeGetvaiue and Slot:AfterGetvaiue will aot be executed. The remaining values are all
used 10 speed up runtime execution. SAFESLOT and SAFEUNIT are designed to perform the
MustBeSiot and MustBeUnit checks, on Unit and Siet, respectively, at compile time. They are
only applicable if that parameter is a constant, i.2. is QUOTEd. SAFE is the same as
including both of these. VERYSAFESLOT and VERYSAFEUNIT :otally avoid calling MustEa---
funcdons, even at compile time. CCNSTANTSLOT means we may assume the values stored on
the unit Stot will not change from now on. CONSTANTUNIT makes similiar assumptions acout
the enit umt. These can be undone using -,AUTICUS, which insists on checking tile vaiidity
of the zrgurents.

DefauitDelateVaiue { unit siot value oidvaiue why | -- {TypicalSlot: ToDelereValuet

This is the defauit way to delete an old vaive. [t is, in form. sssenually ideatical w0
CefauitAgdValue.

-~ .

DefaultKiilVvalue [unit sStot valie comtext wny] - {TypicalSlot: ToK:{V ziue}

This is the defauit way (0 Kiil a slot and its valve. It is, in {crm. esseatially identcal o
CefautPutvalue. Only using the Faferkilingvaiue slot of th2 Format slot 2f Siet. rather than its
EaforPutting slOL

DetfaultPutValue! “mt sict vaiue cigvaie why | -- {TvpicaiSiot: ToPurlciue}

This functon is used for putiing a value in a sivt. Usually, it £rst calls Siot:3eferePurvaise 0N
the apove argument list, augmented with one additional argument, described bclew. In an
errorfree run. this will succeed (i.c. will return nonniL.) and the actual writing wiil =e
performed by the functon stored on StotActuaiPutvaive. Slot:AfterFurvaiue s then cailed cn the
same argument st as SiotBefcrePurvaive, With Vvawe subsituted for owvaie.

If why inciuces Fast-Put. the before and after funcuons wiil not be called. The extra
argument expected by these functions (SlotSeforePutvaive and SlotAfterPutvaie) JAEPears
before why, "sirgte”. [ts value siiould be NIL in this case, and the other parameters should be
their values when handed to Putvalue. [single’s use will Se apparent rom AccValue,
Cetetevae, and Suostvatve, defined in this secdon.]

DefauliRenameClass] Neaname cidClass | - {TvpicaiClass: My ToReramelle}

This is used to rename a unit which represents a ¢lass to a new name, and ten perfomming
the necessary K3 updates. It wiil, if permitted. scan through cach unit loaded it attempting
to perform this substitution, Otherwise, it will simpty follow its various pownters, and
change their value of their respective back-pointers ‘o reflect this change. It will then ask if
it should update first each function, and then all varables in the sysiem; very Ume
consuming processcs.

DefaultRenameSIot] Newname cugsiot | -~ {TypicalSiot: MyToRenameM e}

This is used t0 rename a unit which represents a siot to a new name, and then performing
the necessary KB updates. It will, if permitted. scan through each unit loaded it, attempting
to perform this substitution. Otherwise, it will do two things: First, like DefautRenameunit, it
will follow its various pointers, and change their value of their respccuve back-pointers 0

reflect this change. Second, it wil, unless prohibited, go to each unit winch has this slot,
and rename that slot. [t will then ask if it should update first cach function, and thea all
variables in the system; very time consuming processcs.

DefaultRenameUnit] NewName oidunit] -- {TypicalUnit: MyToRenameA e}
This is used to rcname a unit which represents a class to a new name, and then performing
the necessary KB updates. [t will, if permitted, scan tirough each unit loaded it, attempting
to perform this substitution. Otherwise, it will simply follow its various puinters, and
change their value of their respective back-pointers to reflect this change. It will then ask if
it should update first each function, and then all variables in the system; a very time
consuming processes.

DefaultSlotCacher{ unit Siot vae Modification why | -- {TypicalSlot: ToCache}
This simply stores vaiue On Umt:Sice, using UA-PUTVALUE.

DefaultSubstValue[unt slot vaue Mcdification why] - {TvpicalSlot: ToSubs:Value}

This is the derault way to substitute a new value for an oid one, within the existing value of
2 unitSiot. like DefauttPutvaive, it will call DefauitBetorePutvaive befcre performing this
addition. (Here the value of singie will be nonraL, and is used to indicate the nature of this
alteration.) Next SlotActuarSuostvaive will de called on these arguments; and if this succeeds,
DefaultAtterPutvaive 1S called with these urguments.

"extra” tells whether a single value, or a list of values, are heing changed: and whether the
current value of Un:Sior should he recomputed (using Slot:Dern) U it 5 currently empty

DeraultVerifyValue[unt siot Clavaive Moattication why | -- This function is used to venfv that
Mouification rcpresents a legitimate modificaton to the svalue, Cltavalve. now on UnitSior. 1t
hasicallv calls the function stored on the venryan slot of Siot on the new aiue, if this change
is replacing the rull entry, or uscs Siot veryeizmenr. 1f we arc simply adding 2 aew wvaive. If
cither the new value, or Cidvawe. was a value format. then it calls the FiforberfSing il
(respectively FnForeryiingFlement) siot of the unit encading that vaiue format, on these
argument, 1ncluding that just computed Siotverryan (resgectively SiotvartyElement).

[{ ‘nit Slot cther | - is ascends Unit's JreeregPrototypes. asking each such typical uni
FindDefault] vat siot o This ascends Unit s king each such typical unit
for its Stei value. Tne first one it fiads is rewrned.

FindInverse[Hioen kB sv] - This attempts to find a slot which is the inverse of the slot defined
by the high level detinition, HiDeta. If no such slot exists, and makes sense (i.e. HiLDefn is
invertable,) it asks if it should create such as siot. If the user permits this, it calls CreateSict
on that inverse, x8 and sv. Otherwise it returns that high level definition.

FindSlot[HLpetn k8 sv | -- This attempts to find a slot which is defined by the high level
definition, HLDetn. If found, it returns the name of that slot

FindValue[value Unit Siot others | -- This auxillary function is used to determine the real vatue of
unitsior from the value physicallv stored there, assumed to be the first argument, Value.

FormattedValuep[Value] - This returns nonnit if Value is a value format -- 1e. is of the form
(*Do®).

GetAccessFn[Unit siot other detault] - Used to get various slots associated with accessing/updates
valucs. Returns the first of {Unt Sior, FindCefault[Umt Slot other |, detault), which passcs 1sOk(

val .

HLDefnParser{ PameStr] -- Returns the functional specification denived from the High lLevel
Decftiniuon, Parsestr. This s used by FunctonSpec Defn.

il L

HLTypeParser{ ParseStr Num Argname | -- This rcturns the body of a function which is

designed to take an argument, and return nonniL if that argument is of the type defined by
ParseStr. "Argname” is the name of that argument, which that function should use. "Num”
is either FnForverityingAil, OT FnForVentyingEiement, depending on whether this eveniual funcden
should take a single element of the type, or the full value.

IsEmpty[Value] - Returns nonNiL if value is one of RLL-1's substitute values used for NIL - e.g.
NoEntry Or NoEntries, ,

IsOK{ Vatue] -- Return NiL if value is either empty or needs to be recomputed. Otherwise value is
recurned.

InitializeUnit{ unit mneritance ParentSet] -- This crcates a new unit, named Umt, which is a
descendent of each member of the ParentSet, by the inheritance, Inneritance. [ts algerithm:
Apply 'nheritance:GetPossitieSlots (0 ParemtSet. This produces a list whose elements are of the
form (siotname location where, .. wherey). “location” is the name of the unit whosc Toimtiaiize
slot should be called, on Unit and sictname, to initialize that slot's value. Each wnere, is the

name of a prototype of this new unit, in which the slot, sictname, is frst defined. mitializeUnit
then maps along this list, calling tntiaiizeSiot On siotname. ParentSet, location, and the ust
(where, whereN).

[nitializeSIot unnt Siot Lacaton Pretes | - This invokes Location:Tomwianze R Unit, Siet 204 Protos
(Protes is that Wherc-List). This may use the global varables: uParentSer. wrhich ‘s the
pareats of this uait, and uinhentance, which (s the tvpe of inheritance used.

IntersectDTY owvst | == Each clement of oTiist is 2 catatyme scecification: this sunction returns a
new tvpe specifivation, which is the atersecticn of ail of those -~ .2 whose implied
aeceptance cnitria is e AND-juncton of each member of the input list ¢f <camt pes.

[nvertHLDI! ~ioetn | -- This returns the high level cefinon which compuras the :mearse Lncion
rom the one impied 3y RLZen. O NIL If such a funcu.n s unceined

MapSicis] 7a] -- Maps along :he slots of unit, applying e functon. £~ 10 2ach ot 102 its value.
g P

MeapUnits{ £~ kos] -- Maps along all of the uait in 2n)
applying the functon, Fn, 10 each. i «bs s NIL.
companion function., MapUmitsC GuOtes its argun mL
LAMBEDA expression. the second argument :hould ce ths
bound o the name of the current unit This mapoing <

s
) A erv TIMGSTD wniL A
a
d

MustComputep| vaie] - Retumns nonniL if Lale (foic2ias 2 s = 1 m2ml L §oale SIS
RecomputeAle Of NiL. (varve iS Usually syme UnitSrer ear

Newlsa[vewtnt Pareattats #8 | == This oreaies a row wmil Nea o0 e Lo ool Ln g
ParentUnits. It s cntered into the Kncwieags Duse <2

NewKB[newka | - This creates and imaualizes 3 nev Mnowiesic L wart
NewSubClass| Newunit ParentUnits kB] == This creates 3 rew Uil Newor i 25 o suroia < o0 ciin of

ParentUnits. [t is ertered into the Knowledge DBuase «B

NewTypEX[Newunit Parentunit k8] -- This creates a new umil Newumt, as 4 ;L. xar: ¢ of
ParentUnit. [t is catered .nto the Knowiedge Nasc «e

ey

T g —— g ad Cancihi oiag e N "

NotRemovablef unit siot vae 2 2] -- This returns nonniL if the value of Units.o: must NOT be
removed -- ie if it 1S essential

NU[Newunit Fromunit KB] -- This creates a new unit, NewUnit, essentially identical to Fromunit (after
substituting Newunit for cach occurance of Fromunit). It is cntered into the Knowledge Base

K8.

ek o Mg T

OverallStartUp[| -- This asks the user if he wishes to start the system; and does so if allowed.
It also doe, various other clean-up jobs, appropriate for restarting a suspended version of

the RLL-1 system (i.e. after a SYSOQUT).

RemoveVirtualSlots| unitist] == This walks along the wnit in Unslist. removing their extraneous
virtual slots. (Note a slot is essental if it is included in the unit's My&ssenualVirtualSlots
list, or under a few other nacky conditions. See the function., NotRemovable.) There are
scveral situations in which the user is prompted -- such as whken an undefined slot
encountered, or when this unit lacked some essenual slot

StandardFinishUp[«8 args] == {TvpicalStatus: WhenWritingNetwork}
This function is called when the knowledge base, xB, is written out. and closed. [t first asks
if extraneous virtual slots should be removed, then, (if there are other currently open
knowledge bases.) if k8 should be disconnected. and rnally, if this knowledge base should
be diagnosed. These inquiries can be avoided if (CAR (NTH args 1) is Y (indicaiing an
affirmative response) or N (negative).

StandardStartUp{ «e args | == {TypicaiStacus: [} renOpenningNetwork}
This function is called when the knowledge base, K8, is cpeaned. It first does various
overhead tasks, such as initializing and updating variables. 1t then considers adding inverse
links to all the units of KB, to reconncct to the other knowledge bases currently in core.
This time consuming process is performed if there is some active knowiedge base currontly
unconnected to X8, and the user permits it. This inguiry can be avoided if (CAR args)=Y (10
connect the links if nccessary) or N (not to reccnnect, period).

START(] -- This actuaily begins RLL-1. It handles ail of the overhead, then loads in the desired
knowledge bases.

UnionDT][omist | --Each element of oTlist is a datatype specification: this furcticn returns a niew ;
type specification, which is the union of all of these -- i.c. whose implied acceptance criteria :
is the OR-junction of each member of the input list of datatypes. :

UpdateDepend] unit siot Newvalue Modification why | ==This is used to update the knowledge base, !
to reflect the Moaification made 0 Unit:Sfor. IF appropriate, it cails the function stored on
Siot:KBUpdates, on the above quintet of arguments.

Updatelnverse[unit siot Newvalue Modification why agav detv | == This is used to update the i
knowledze base, to reflect the Modification made to Unitsrer. I Siot has an inverse, the back :
pointers are changed, as appropriate.

D.3: Convenience Functions

Advisor[] -- This advises several functions, for several rcasons. Sce Section D.S.

PREPprYPu

EveryFn[tist Fn] -- This is like MAPCAR, except it stops if applying Fn to any clement returns NiL.

IntersectN[ust, Ust, .. sty | - This is the N-ary form of the binai 7ZRSECT.

Maplnsert[List #n] - This is like SubSetFn, exc2pt it breaks (i.e. gives a warming message) if any
element of Fn fails sOk, 2nd it uses less LIST-space.

MapMerge[ust £n] -~ This MERGES the results of applying Fn to cach element of Lst. (Nete it
breaks (i.e. gives a warning message) if any such eclemeant fails isCk.)

MapUnion[tist Fn] -- This unions the results of applying Fn to each element of List. (Note it
breaks (i.e. gives a warning message) if any such element fails isCk.)

MapUnrilOk{ List Fn] -~ This returns the first 1sOk resuit of applying Fn to an clement cf List.
(Note it breaks (i.e. gives a waming message) if any such element fails isCk.)

MergeN[Ust; ust, ... Usty] - This is the N-ary form of the binary MERGE.

ReadYesNo[Lteraistring | - Prints out LiteraiStnng as prompt, then requests input. Returns 7 if
user responds with "Yes”; NiL otherswise.

SOS[rew?] = For debugging, we maintain a SR'EELIFLE recording the activity of each session.
Every uNUM-BETWESN-SOS uscr responses, the uncuon SCS-M. Iving In PRCVPTCHARFCRMS.
cails on SOsS 1o ciose and recpen the current dribole file, named CrbeteName., In acddiden, if
this is the uNUM-BETWEEN-SCS'th tme this funcZon has -een cailed, it zsks e user If he
wishes 0 SYSCUT now.

If new? is nonMiL, SCS also finds a new name for the Eribtle dle, before doing 2l the
rest.
Setting uCK:eSCS 0 NiL turns off this drictling.

SomeFzn[st Fn] -~ This is like sCME. except it retumns the wvalue of S of the frst element
x€uist which rewns nonniL, rather than the sublist of Ust which hegins with «.

SubSetFn[List #a] -- This is like SUSSET, except it ratums the list of values, Fax), for each
slement x€List which returns nenNiL, cather than the sublist of List containing such «

Tracer] Faname stk] -- This is an aide to debuggzing, especially useiul when a recurzive fincden
seems 0 be in an infinite descent. [t advises this function 0 maintain a stack. on the
variable stk (defauited to (PACK® FnName 'STK) if omitted) of cutstanding arguments passed
to this function.

UnionN[usty sty .. lsty] - This is the N-ary form of the binary uNICN.

WhatXB[Name kb must mightten] -- This is used o find the knowledge hase in which to enter
the new thing, named "Mame™. i kp is suppilied, and is a member of the UF NETWCRKS, that
value is returncd. Otherwise, if there is only one knowledze base epen, that value wiil be
retcurned. (If must is N, indicationg this new thing necd not be afiliiated. the user is first
asked if this is approprate. Otherwise, he is just informed that this affiliation has
happened.) If nonni, the value of might-be-kb iS suggested to the user, who can appreve it

bv responding "Y™.

WhichFnList[raname] -- This returns the name of the list on which the function, FnName. is
located. (Note the utlity functions have been split up into scveral logically distinct classes,
each with its own list. Also most knowledge bases come with their own such list of

functions.)

WholsUser[vai] -- This attempts to find (and return) the unit under AnyUser which represents
val (which defaults to the current user). If none is found, and if allowed, it will crcate a
new unit for this uscr, and return that value.

F.4: Advised Functions

Except where otherwise noted, every bit of this advice is set in Advisor, and is permanent.

LOGOUT is told to close the dribble file, and checks if the current state of this LISP session
should be released -- i.e. if any writes onto a KB have been performed since the last SYSOUT.

As each function is defined, the user is asked if in which file he wishes to store this function. This K3
management is done by the advise to \PUTD, PUTD, \MOVD and MOVD. LOAD, ADVISE, READVISE are all told
to tell \PUTD's advice not to try to save the temporary functions they generate.

eDITE has been advised to do two things: First, it knows not to bother \PUTD’s advise when a
function's source code is read in. Secondly, it warns the user if he tries to use EDITP o edit a unit
that his changes not only might not be saved, but he might really foul things up as well

The only other function RLL-1 ever advises in up-puTUNIT. This is done by Cleanws, and is
usually remov~d the next time LP-PUTUNIT is called. This advise tells the user some unit is about to

written onto the external “PAGE file; and permits him to enter readonly mede at this point

F.5: Gloobal Variables

PROMPTCHARFORMIS has been changed, by adding (Scs-Me). This function helps maintain
the dribble file,

AFTERSYSOUTFORMS, BEFORESYSOUTFORMS have been added to. so the right

things happen when the user does a sysouTt (ie. *PAGE fles get saved, ..)
BeenStarted is 1 if the RLL-1 system has been started already, otherwise NIL.

DribbleName, uAilDribble[Files are used by sos, to record the current. and all previous
dribble files used, respectively. uAnDritbleFiles is printed out by the advice to LOGOUT.

UNUM-BETWEEN-SOS stores 2 value SOS-ME uses to decide when it is time to call Sos.
Currenlty set to 25. {(SCs also uses it to decide when to suggest the user SYSOUT.)

uAllUsers stores all users who have used this sysout, and written out any changed uaics.

uSYSOUTNAME is the name of the last SysouT performed; or RLL-1.exg if none have been
done.

RenamedUnits, DeletedUnits store lists of units which have been renamed (as dotied pairs) or
deleted, respectively.

WORRIES stores text describing past events which might later lead to wouble - ie. they were
not scrious cnough to brecak on, but they still should not have happencd.

KernelKB is the name of the siarting, "top most” knowledge base -~ currently, of course, RLL-1.

uValue, uContext are used when IMPURE is onc of the values listed by others, when passed to
DefaultGetvalue. They are set to the value and unit on which this value was found.
respectively, <uContext may be meaningless now.>

DefaultGetValueOptions is used by CefaultGetvaiue as the default value for others, when that
argument is NiL.

11

G. Appendix - Sample Session

This appendix shows a session the author had with the current RLL-1 system. This Is
deslgned to provide a flavor of RLL=1's capabilities. as well as describe the formats for its
various commands. Comments are shown enclosed In braces, *{ }"s.

SubSection

7 .
20
3'
4'
S.
6.
7.

27.
28.
29.
30.
31.

Page

—~— md A ma g
CNNDROOONNS a0 OMAN

NN
~~QO0Q

N
N

NN NN
(LR R AY

Table of Contents

Topiec

Starting the system

What was created?

locking around

Creating a new class

Creating a new typical example, for a class
Slot verilication by EDITU

Examining unit which represent Formats
Adding on a new person

Creating a new entity - HisMother

How are new unils created?

Hack to LISP's evaluator

Creating a new datatype - GenderlType
Engendering our visitor

Indicating that Mothers are female

Add another person

Can a male be a mother?

Now make Husbands male:

To give HisMother a Husband

Create a new type of siot = Father

There is a unit for Composition:
Examples of SlotCombiners

What e/se can we say about Father?

Far too quiet:

How do accessing functions really work?
The FindDefauit lunction:

Strategy:

What gets done when? = system dependent Ins
Creating a new [unction

New class ol types of slots - ChattySlots
Create a new typical member of AnyChattySiot
Conclusion

G-2

<< 1. Starting the system 2)0)
[adviced USERNAME to return "NewUser" for this.]

@<CSD.IA>DEMO.EXE

Shall | start the RLL system now? yes

a2z Am opening Dribble file: TRACE.Aug18 [18-Aug-80 13:38:458]
Reading in RLL.STATUS now.

Opening knowledge base <CSO.RLLORLL.KB.12

Opening paging file ¢<CSD.IA>RLL.PAGE.1

Loading unit RLL.UNITINDEX

Loading unit RLL.STATUS

Last written by (CSD.GREINER 16-Aug-80 22:18:15)

{{Loading unit KBSFNS
Loading unit Alllsas
Loading unit ToGetValue
Loading unit OrderedPrototypes
Loading unit Defn
Loading unit Prototypes
Loading unit MySlotsNowOrdered
Loading unit TypicaiPrimSiot
Loading unit TypicalSiot
Loading unit BeforeGetVaiue
Loading unit AfterGetValue
toading unit XBsVARS
Loading unit KBsConnectedTo}}

This kb, RLL is already connected to all of (RLL).
Do you wish to read in any Knowledge Bases? yes

{{Loading unit AlExamples
Loading unit AnyUser
Loading unit UserNames
Loading unit RussGreiner
Loading unit Douglenat
Loading unit LarryHines
Loading unit AndyFreeman}}

| don't know who you are!
Shall | create a unit to store information about you? yes
Is NewUser an appropriate name? no

What name would you prefer? Visitor

{{Loading unit GetPossibieSlotsFn
Loading unit IExamples

Loading unit LispFn

Loading unit TypicaiVirtualSiot
Loading unit PossibleSiotsOfiExamples

.

Loading unit StoredAList
Loading unit GenisModels
Loading unit SuperClass*
Loading unit TypicalExample
Loading unit Anything

Loading unit AnyCT&U

Loading unit NewPossibleSlots
Loading unit TypicalCT&U
Loading unit MyCreator
Loading unit MyTimeOfCreation
Loading unit MyToKiliMe
Loading unit TypicalAccessSlot
Loading unit MyToRenameMe
Loading unit MyEssentialVirtuaiSiots
Loading unit MySensibleSiots
Loading unit MyCreatedAs
Loading unit MySiots

Loading unit TypicaiThing
Loading unit Specializations
Loading unit TypicaiUnitFn
Loading unit TypicaiStorableFn
Loading unit TypicalFunction

- Loading unit TypicalProcess

Loading unit 1sa

Loading unit AllGenis

Loading unit AllSpecs

Loading unit Characteristics
Loading unit Descr

Loading unit TypicaiUser
Loading unit InformaiName
Loading unit UsualKBs
Loading unit WritingOptions
Loading unit OpenrningOptions
Loading unit OrderForTolnit
Loading unit Typical$SELF$Slot
Loading unit ToAddValue
Loading unit BeforePutVaiue
Loading unit VerifyElement
Loading unit Format

Loading unit FnForPutting
Loading unit FSet

Loading unit SuperTypEx*
Loading unit TypicalExampieOf
Loading unit SuperClass
Loading unit FnForAdding
Loading unit ToCache

Loading unit ToPutValue
Loading unit AfterPutValue
Loading unit Inverse

Loading unit KBUpdates
Loading unit Examples
Loading unit AliTypicalExampleOfs})

1 -~ RESOL

2 == GENLINFO
3 -- BIOLOGY
4 -- SETS

S5 == MATH

6 == NUMBER
7 == HOBBIT

G-3

8 -- HEURS
9 -- OLD
10 -- EURISKO

Enter the numbers of the ones you wish to use: 2

{{Loading unit FunctionSpec
Loading unit HighLevelDefn
Loading unit DomainType
Loading unit FList}}

Opening knowledge base {CSD.RLLYGENLINFO.KB.4
Opening paging file <CSD.IA>GENLINFO.PAGE.1

{{Loading unit GENLINFO.UNITINDEX
Loading unit GENLINFO.STATUS}}

Last written by (CSD.HINES 31-Jul-80 15:38:24)

Network RLL aiready open.

This kb, GENLINFQ Is aiready connected to all of (GENLINFO RLL).
KBs loaded.

(<CSD.IA>DEMO.EXE.3 . <LISP>LISP.EXE.133)
<<<< 2. What was created? 222>

{Turn off those obnoxious Loading, ... messages}

99«(SETQ UP.TRACEFILE NIL]
(UP.TRACEFILE reset)
NiL

{Now look at what was just created)

100=EDITU(Visitor]
edit

98*pp
{Note this is a property list, of the form (slot1 vaiue1l siot1 value2)

{1sa (AnyUser)

UserNames ("NewUser")

Allisas (AnyCT&U Anything AnyUser)

Prototypes (TypicalUser TypicalCT&U TypicaiThing)

MySlotsNowOrdered (OrderedPrototypes)

{NOTE: Slots beginning with "My" are syntactic.}

UsualkBs (RLL)

MyCreatedAs (IExamples (AnyUser))

MyTimeOfCreation "18-Aug-80 13:40:23"

MyCreator "NewUser"

OpenningOptions NoEntries

MySensibleSiots (Descr Characteristics Prototypes AliSpecs AllGenls Allisas Isa
OrderedPrototypes Specializations MySiots MyCreatedAs
MySensibleSlots MySiotsNowOrdered MyEssentialVirtualSiots
MyToRenameMe MyToKiliMe MyTimeQOfCreation MyCreator UserNames
OpenningOptions WritingOptions UsuaikBs InformaiName))

98%ok
Nothing changed.
Visitor

<<<< 3. Looking around 22>

{Let's see the top level units:)

1<Di(Anything S 2] .
Note the trace flag has been turned off.

Anything
AnyATaU
AnyAbstractThing
AnyCT&U
AnyConcreteThing
AnyUnit

IDONE!

{This showed the subciasses of Anything, down (a total of) two leveis
The ...&U units are hacks, to store both the unit and its meta-unit
in the same physical unit.

More interesting is:}
2-Di(AnyCTa&U S 2]
Note the trace flag has been turned off.

AnyCT&U
AnyClassOfObjects
AnyDa‘atype
AnyDecomposabieObject
AnyFormat
Anyinheritance
AnyintensionaiObject
AnyOverhead
AnyProcess
AnyUnit
AnyUser

IDONE!
<< 4, Creating 8 new class 20>)

{Let us creats a new unit - which refers to people:})
4-NewSpec(AnyPerson]
Is & ISubClass of: AnyCT&YU
Piease enter the Knowiedge Base in which to store AnyPerson: GENLINFO

s the format of (LAMBDA (units si? oth?) (MapUnion (isOk units)
(FUNCTION (LAMBDA (x) (GetValue x (QUOTE Prototypes) (AddOnCharacter
oth? (QUOTE VERYSAFESLOT))))))) a list?

yes

{Here, RLL is asking about the Format of the exprassion (LAMBOA ...).

G-6

This was because it didn't know about the function *"MapUnion®.
It will, later in RLL's development.}

You are about to write on an external file.

Do you want to enter ReadOnly mode? no

{Before the first write, RLL gives the user a chance to leave
the systems unmodified. Here, we told RLL to go ahead.)

® Initialized AnyPerson *

aedit

99*p

(isa (AnyClassOfObjects)

Allisas (AnyCT&U Anything AnyClassOfObjects)

Prototypes (TypicaiClass TypicalCT&U TypicaiThing)

MySilotsNowOrdered (OrderedPrototypes) .

MyCreatedAs (I1SubClass &)

MyTimeOfCreation "18-Aug-80 13:50:28"

MyCreator "NewUser"

TotalSoFar O

SuperCiass (AnyCT&U)

MySensibleSlots (Descr Characteristics Prototypes AllSpecs AllGenis
Allisas Isa OrderedPrototypes Specializations MySlots MyCreatedAs
MySensibleSiots MySlotsNowOrdered MyEssentiaiVirtualSiots
MyToRenameMe MyToKillMe MyTimeOfCreation MyCreator TotaiSofar --))

{ t These are slots which are well defined for this unit.}

*** Am re-opening Dribble file: TRACE.Aug18 [18-Aug-80 13:63:01]

t A dribble file records the sesslon. (You're looking at it now.]
This class unit looks }

100%ok

Verifying siots

AnyPerson

<<<< 5. Creating a new lypical example, for a class J)>))

{Now we'll create a unit which hold facts typically true of any person.
(That is, default values; as well as a list of new siots to be inherited

by every new person.]}

&~NewTypEx]

Name: TypicalPerson

Is a ITypEx of: AnyPerson

Please enter the Knowledge Base in which to store TypicaiPerson: GENLINFO

Is the format of (LAMBDA (units si? oth?) (MapUnion (IsOk units) (FUNCTION (LAMBDA
(uNiTcomp sLOTcomp oTHERcomp) (OR (MapUnion (GetVaiue uNiTcomp (QUOTE GenisModels)
(AddOnCharacter oTHERcomp (QUOTE VERYSAFESLOT)))

(LAMBDA (x) (GetValue x (QUOTE Prototypes) (AddOnCharacter oTHERcomp

(QUOTE VERYSAFESLOT)))))) NoEntries)))))

a list?

yes

{No, RLL still doesn't know about MapUnion.))
Shail | create a slot with the high levei defn:
(Compasition TypicaiExampile SubClass*)? no

{To update inverse links, it has to “invert” each relevant slot.
For this it uses that slot's high level definition... which goes to
the slot combiners invoived, ...

Above it was inverting GenisModels, whose HighlLeveiDefn was

(Composition SuperClass* TypicalExampieOf]

RLL was asking whether to preserve this definition as or slot, or not.

| said NO.}
® Initialized TypicalPerson *
edit
1*p

(isa (AnyArchetype)
TypicalExampileOf AnyPerson
v NewPossibleSiots NoEntries
_’. Allisas (AnyintensionalQObject AnyCT&U Anything AnyAT&U AnyArchetype)
B Prototypes (TypicaiTypicalEx TypicaiCT&U TypicalAT&U TypicalThing)
MySiotsNowOrdered (OrderedPrototypes)
MyCreatedAs (ITypEx &)
MyTimeOfCreation "18-Aug-80 13:58:43"
MyCreator "NewUser"
MySensibleSiots (Descr Characteristics Prototypes AllSpecs
AllGenis Allisas isa OrderedPrototypes Specializations MySiots
MyCreatedAs MySensibleSiots MySlotsNowOrdered
MyEssentiaiVirtualSiots MyToRenameMe MyToKillMe MyTimeOfCreation
MyCreator SubTypEx® SuperTypEx* SubTypEx SuperTypEx
TypicaiExampleQf NewPossibleSiots PossibleSiots))

{1 These slots are pertanent to ail prototypes, such as this TypicaiPerson.
RLL determined these using from the prototypical prototype,
TypicaiTypicalEx.}

2"Sup p

... NewPossibleSlots NoEntries

{1 Its value lists the new siots, which ail people will have.}

{Currently it is empty.
(Note we use "NoEntries" to indicate a list we know is empty,
leaving NiL to mean a vaiue we simply don't know.]}

3*(2 (Mother Husband))

{Now new examples of AnyPerson will have these two slots.}
4™tk (b Mother NoEntry Husband NoEntry)

5%p
... Mother NoEntry Husband NoEntry NewPossibleSiots (Mother Husband) ...

{(NoEntry is like NoEntries in purpose. It, however,
refers to the absense of a single entry.)

Herwe, it is used to indicate that TypicalPerson cannot
provide any sort of default information about a new unit's relatives.

It aiso causes RLL to consider creating a Mother (resp. Husband)
type of slot. This Is done in EDITU.}

8ok

G-8

<< 6. Slot veritication by EDITU >)0>?

Verifying slots
Your attempted slot name Mother is NOT even a unit. Should it be? yes
{This will create a new unit, to house facts about the “Mother” siot.)}
What should the Isa link for this Mother link be?
{1t will be created as a new Primitive slot - hence the "P" response above.)

Expecting one of:
(PVA®)

What should the Isa iink for this Mother link be? P

Please enter the Knowledge Base in which to store Mother: GENLINFO

® Initialized Mather *

edit

8%pp

(Isa (PrimSlot)

Allisas (AnySilot AnyUnitListFn AnyFunction AnyCTaU Anything AnyProcess
AnyStorableFn AnyUnitFunction PrimSiot)

Pratotypes (TypicaiPrimSlot TypicalSiot TypicalUnitFn TypicalStorableFn
TypicaiFunction TypicaiProcess TypicalCT&U TypicaiThing)

MySlotsNowOrdered (OrderedPrototypes)

MyCreatedAs (IExamples (PrimSiot))

MyTimeOfCreation “18-Aug-80 14:10:56"

MyCreator "NewUser"

Format (*Do* FOneQf FSingleton FSet FList FOrderedSet FBag)

{We'll see soon this special vaiue, 1, will be useful.}

Datatype (NonNiLType)

MySensibleSlots (Descr Characteristics Prototypes AllSpecs AliGenis Alllsas isa
OrderedPrototypes Specializations MySlots MyCreatedAs
MySensibleSlots MySlotsNowOrdered MyEssentialVirtualSlots
MyToRenameMe MyToKiilMe MyTimeOfCreation MyCreator WhatToProcess
HowToProcess LispFn IUseDefnOf iUseCVOf DefnUsedBy CVUsedBy
FunctionCharacter RangeType DomainType PreConditions Range Domain
Definition FunctionSpec Format Datatype DataRange Defn
HightLevelDefn IsBuiltFrom UsingFunctions SlotsBuiltFrom
UsingFunctionals UnitsBuiltFrom SiotsUsedinBuilding TolookUp
ToCache LispFnForStoredFn StoredAlist ToConfirmVailue
UsingSlotCombiners ToGetValue HandDoneSBF AlISBF VerifyElement
VerifyAll ToSubstValue ToDeleteValue ToAddValue MakesSenseFor
SubSiot* SuperSiot* SubSlot SuperSiot Tolnitialize ToPutValue
OrderForToinit KBUpdates inversae isEssentiaiFor))

8*f Datatype

9*p

... Datatype (NonNiLType) ...

8*(2 (UnitType) DataRange (*P AnyPerson]
{This "UnitType" indicates the value of U:Mother will be a unit;
and the DataRange restricts that, to say that unit will descend
from AnyPerson)

10*1 f Format

12*2 p

(*Do* FOneOf FSinglaton FSet FlList FOrderedSet FBag)
{I€ The format must be one of these.
We'll see soon that each of these formats is really a unit.}

13*xtr 3

{This means U:Mother will be filied with a single entry.
That's all | want to say about Mothers, at this time.)}
14%ok
Verifying slots
{We now pop back to editing TypicalPerson, and find another non-siot:)

A omdbinf Ay

Your attempted siot name Husband Is NOT even a unit. Should it be? yes
What should the isa link for this Husband link be? P
Please enter the Knowledge Base in which to store Husband: GENLINFO
*® Initialized Husband *
edit
{To fix Husband's range specification:}
15"t Datatype
16*2 p
{(NonNILType)
17*: (UnitType) DataRange (*P AnyPerscn)
18%ck
Veritying siots
What shouid the vaiue of Husband:Format be?

Expecting one of:
(FSingleton FSet FlList FOrderedSet FBag)

What shouid the vaiue of Husband:Format ba? FSingleten

TypicalPerson
{Note it asked for Husband's format, as | hadn't specified it; and RLL
tigured it wouid be needed eventually.}

<< 7. Examining unit which represent Formats J22)
{Note first that there are twa subclasses of formats:)
30«SubClass(AnyFarmat]
(AnySlotFormat AnyValueFormat)

{The interesting one is}
31~Exampies(AnySlotFormat)
(FSingleton FList FSat FOrderedSat FBag FListN)

. {Each of these is a bonafide unit:)
i 32-EDITU(FSet]
edit
66%p
(isa (AnySiotFormat)
FnForVerityingAll (LAMBDA & &)
FnForverifyingElement (LAMBDA & &)
FormatCharacter (MayBeEmpty NonOrdered NoDupiicated ArbitraryNumberOfEntries)
FnFarAdding (LAMBOA & &)
FnForDeleting (LAMBOA & & &)
FnforSubstituting (LAMBDA & & &)
FnForPutting (LAMBDA & &) --)
{The vaiue for each of the Fnfor--- is a8 function, which Is used by some
accessing function (eg GetValue) to view or alter a vaiue.}

68*ok
Nothing changed.
FSet

36«(MAPCAR (Examples 'AnySiotFormat) 'FormatCharactar]

{(MayBeEmpty SingleEntry)

(MayBeEmpty Ordered Duplicates ArbitraryNumberOfEntries)
(MayBeEmpty NonOrdered NoDupiicated ArbitraryNumberOfEntries)
(MayBeEmpty Ordered NoDuplicated ArbitraryNumberOfEntries)
(MayBeEmpty NonOrdered Duplicates ArbitraryNumberOfEntries)
(MayBeEmpty Ordered Duplicates ExactNumberOfEntries))

<< 8. Adding on a new person J>))>)

{Back to our main plot:
Let's make Visitor think of itself as a person,}
8~EDITU(Visitor]
edit
i 18%p
(isa (AnyUser) UserNames ("NewUser*) ...)

19%2 (n AnyPerson]
21"0p
(1sa (AnyUser AnyPerson) UserNames ("NewUser") ...)

22"ok
Verifying siots
Visitor

{Note | could have made AnyUser a subclass of AnyPerson,
but who knows who (or what) will eventually be using RLL...)
7-EDITU]
=Visitor
edit
{Let's give our visitor a mother:)

23*(n Mother HisMother]

{{Note this should NOT work, as we have yst to define "HisMother”...)}
28"ok
Verifying slots

Trouble doing actual Put (Visitor Mother HisMother)
Shall 1 go on, break, or edit this value? Go

| Visitor
: <¢<< 9. Creating a new entity = HisMother 220>
{So let’s create that unit.}
8~Newisa)

Name: HisMather

Is a |IExamples of: AnyPerson

Please enter the Knowledge Base in which to store HisMother: GENLINFO
* Initialized HisMother *

edit

29%pp

(Isa (AnyPerson)

Allisas (AnyCT&U Anything AnyPerson)

Prototypes (TypicalPerson TypicalCT&U TypicalThing)

MySiotsNowOrdered (OrderedPrototypes)

MyCreatedAs (IExamples (AnyPerson))

MyTimeOfCreation "18-Aug-80 14:27:04"

MyCreator "NewUser”

MySensibleSlots (Descr Characteristics Prototypes AllSpecs AllGents Allisas i1sa
OrderedPrototypes Specializations MySiots MyCreatedAs
MySensibleSiots MySlotsNowOrderod MyEssentialVirtuaiSlots
MyToRenameMe !AyToKillMe MyTimeOtCreation MyCreator Husband Mother))

29%ok
Veritfying slots

HisMother
<¢<< 10. How are new units created? 200

37-PP(Newlsa)
loading from (CSO.RLLOUTIL..7

(Newisa
[LAMBDA (Son Parent whichkd) **COMMENT"* **COMMENT**
{NewUnit Son Parent (QUOTE IExamples) whichKB T])
(Newisa)

{So what Is "IExamples}

38-EDITU(IExampies]

edit

89"p

(isa (Anyinheritance)

Descr (Here is a the inheritanca fo creating something which Is an examples
of some class.)

UseToGetSiots GenisModels

GetPossibieSiotsFn PossibieSiotsC/'Examples)

{There may eventually be other things stored hare, once we figure out
what we mean when we say "lnharitance”.}

69%ok

Nothing cnangec.

IExamples

{Are there other inhenitances?)
39<~AilExampies(Anyinheritarrce]
(1TypEx 1SubClass ([Exampies)

{What is that PossitieSictsCtiExamplies?)
39-EDITU(PossibieSiotsCliExamples
adit
70°%p
(UsedBylnhentance IExampies
Isa (AnySiotGetter)
Forma! FOrderedSet
HighLevelDefn (PutinCrder (CommonXProd NewPossibleSiots
(ApplyToEach MapUnion GenisModals)
WhereinitFn)
OrderFarToimit CAR Nil)
L)
{Wow - lcck at that MighiLeveiDefn!)
72*%0k
Nothing chanqged.
PossibieSiotsOf Exanptes

£€<¢ 11.Hack lo LiSP’'s evaiuator DD)?
{To see our coilection of pecpie:)
9~Exampies(AnyPerson]
{(HisMother Visitor)

{ 1) Thatis, as U-isa was filed with AnyPerscn,
U was added to AnyPerson:Examples
2) Note there is no function named "Examples™,
That call worked because we've hacked up LISP's evaiuator to try
(GetValue U 'S) if S(U) tails)

G-11

G-12

10~GETD(Examples]
NIL

{1t is, of course, a unit:}
11 «Unitp(Examples]
RLL
{The same is true for AllExamples, shown last page.}

<<<< 12. Creating a new datatype - GenderType 2>>)

{Lets now create a new datatype, to heip us distinguish
Males from Females
First, what are the current datatypes?}
11=-Examples{AnyDatatype]
(KBType TVType NonNiLType GrammarType NumberType BooleanType UnrestrictedType
FunctionType SlotType IntegerType UnitType StringType)

{We'll create a copy of BooleanType, then modify that copy,
using the function}
12-NU(GenderType)
Copy from: BooleanType
Please enter the Knowledge Base in which to store GenderType: GENLINFO
edit

30%pp
(Isa (AnyDatatype)
VerifyType [LAMBDA (x)
(FMEMB x (QUOTE (T F]
GenerateAll [LAMBDA NiL (QUOTE (T F]
IsTypeQf NoEntries
SuperDT (NonNiLType)
MyCreatedAs (IExamples (AnyDatatype)))
(Apparently the function stored in VerifyType returns nonNIL
if its argument qualifies as a member of this datatype.
(We could have found this out by looking on the "VerifyType® unit...)
and GenerateAll returns a list of these acceptable vaiues.}
30%*(R (T F) (Male Female Neuter Hermaphroditic]

34*PP
(1sa (AnyDatatype)
VerifyType [LAMBDA (x)

(FMEMB x (QUOTE (Male Female Neuter Hermaphroditic)
GenerateAll [LAMBDA NIL (QUOTE (Male Female Neuter Hermaphroditic]
IsTypeOf NoEntries

{Everything else locks right. so}
42*ok
Verifying siots
GenderType

{Note another way of doing this would be to create a new class, AnyGender
and have a unit for each of these - Male, Female, ...

This was how Formats, Datatypes, Inhaeritances, ...

were all handiled.

Let's now have genders, all around})

<<<<¢ 13. Engendering our visitor 222>

13«~EDITU(Visitor]

edit
43*(~1 Gender Male]

{Showing my prejudices, !'ll assume this visitor is masculine.

G-13

Ncte there Is now no unit named Gender. RLL will notice that also.}

44™p

(Gender Male Isa (AnyUser AnyPerson) UserNames ("NewUser") ...)

44*ck
Veritying slots

Your attempted slot name Gender is NOT even a unit. Should it be? yes

What should the Isa link for this Gender link be? P

Please enter the Knowledge Base in which to store Gender: GENLINFO

® Initialized Gender *

edit
45™p

(I1sa (PrimSlot) Alllsas (AnySlot AnyUnitListFn AnyFunction AnyCT&U Anything
AnyProcess AnySterableFn AnyUnitFunction PrimSlot) Prototypes (TypicaiPrimSiot
TypicalSiot TypicalUnitFn TypicalStorabiefn TypicaiFunction TypicaiProcess
TypicalCT&U TypicalThing) MySiotsNowOrdered (OrderedPrototypes) MyCreatadAs (
IExamples &) MyTimeOfCreation "18-Aug-80 14:43:27" MyCreator "NewUser” Format (
Do FOneOf FSingleton FSet FList FCrderedSet FEag) Datatype (NonNiLType)

--)

{Lets fix up the value of Datatype, using cur newly created one:)

45*15up p

... Datatype (NonNiL.Type) MySensibieSiots (Descr Characteristics ...

47%(2 (GenderType]

{I" also indicate that only pecple can have genders, using the

MakesSenseFor slot:})
49*(n MakesSensefar (TypicalPerson)
50*%ok
Verifying slots

What should the value of Gender:Farmat be? FSingleton
Visitor

{As Inverse(MakesSenseFor) is NewPossibleSiots,
Let's now look at the NewPossibleSlots of TypicalPerson}

46-NewPossibleSlots{TypicalPerson]
(Gender Mother Husband) .

<<<< 14. Indicating that Mothers are female

{Let's now specify that all Mothers are female:
First, how to say that range specification,
look at the UnitType datatype.}

47 «EDITU(UnitType]

edit

93%*p

(i1sa (AnyDatatype)
VerifyType Unitp
1sTypeOt (Husband KBsConnectedTo Isa NewPossiblaSlots ..}

N

2220

G-14

Rangelnterpreter UnitRange

SuperDT (NonNiLType)

SubDT (SlotType)

MyCreatedAs (IExamples &)

Allisas (AnyCT&U Anything AnyDatatype))

<

oy 93"f Rangeinterpreter
94%p

... Rangelnterpreter UiitRange ...

{The vaiue of DT:Rangeinterpreter is a function, which uses a siot's
DataRange vaiue to compose a function. That functlon is used to
restrict the values acceptable for that slot.}

Q4*2 p
UnitRange

{
!

{Lets look at this functions}
95*%ef
loading from <CSD.RLLYRLL..6
prop
edit
g5%p

(LAMBDA (rangespec vainame) **COMMENT™® (AND & &))

{Details omitted for brevity.}
95*ck
not changed, so not unsaved
UnitRange

g6*ok
Nothing changed.
UnitType

{What is the current range type of Mother?)
48«~RangeType(Mother]
{FSingleton (UnitType (*P AnyPerson)]

{That is, the vaiue of U:Mother Is a single valua, which Is a unit,
which descends from AnyPerson.
Now to add that specification to Mother:}

49-EDITU(Mother]
edit

97*f DataRange

g8*2 p

(*P AnyPerson)

99*mbd (L-AND * (Siotval Gender Femals]
100*p

(L-AND (*P AnyPerson) (SlotVel Gender Female))

{By the way, thera is a unit for this L-AND)
100*EV
edit

100*p

(isa (AnyLogicalOp)

MyCreator "CSD.GREINER"
MyTimeOfCreation *15-Apr-80 17:43:55"
MyCreatedAs (IExamples &)

Detn (LAMBDA & &))

100*0k
Nothing changed.
L-AND

1*ok
Verifying slots
Mother

{Now to show that Mother's RangeType has changed:}
61-RangeType(Mother]

[FSingieton (UnitType (L-AND (*P AnyPerson)
(SlotVai Gender Female]

<<<< 18. Add another person 12020
{Add another person to cur K8}

52-Newlsa(Fred AnyPerson GENLINFC]
* Initiglized Fred *
edit

2%p

(Isa (AnyPerson) Allisas (AnyCT&U Anything AnyPerson) Prototypes (TypicalPerson
TyplcalCT&U TypicalThing) MySlotsNowOrdered {(OrderedPrototypes) MyCreatedAs (
IExamples &) MyTimeOfCreation "18-Aug-80 15:03:25" MyCreator "Newlsar”®
MySensibieSlots (Descr Characteristics Prototypes AliSpecs AllGenis Alilsas Isa
CrderedPrototypes Specializations MySiots MyCreatedAs MySensibleSicts
MySlotsNowCrdered MyEssentialVirtuaiSlots MyToRenameMe MyToKillMe
MyTimeOfCreation MyCreator Husband =-=))

{Lets engender Fred}
2*(n Gender Maie]
ok
Verifying slots
Fred

{As a side comment, creating Fred tcok much less time than creating
HisMother, as much of the information needed to create a new example
AnyPerson was cached away during this first computation.

This was true in generai - the first time a new unit is created using
inheritance |, from the list of parents, P, it will take a long time.
Subsequent children of these parents will created and initiaillzed much
taster.)

<< 16. Can a male be a mother? 22>

{Lets see it we're aliowed to make Frad a mother:

(Note PutValue returns NIL oniy if some error had basn encountered.])
63-PutValue(Fred Mother Visitor]
NIL

{That is, no value was put -~ L.e.}

G-16

G-16

€8«UA-GETVALUE(Fred Mother)
NiL
{[Note UA-GETVALUE is like GETPROP ~ no smarts)
We now show PutValue can do something:
First, let's make HisMother Female:)
69+~PutVaiue(HisMother Gender Femaie]
Female

70+«PutValue(Fred Mother HisMother)
HisMother

{Proof:}
71-UA-GETVALUE(Fred Mother]
HisMother
<<C<< 17. Now make Husbands male: 2>)))

73+-EDITU(Husband)
edit

19*f DataRange

20*p

... DataRange (*P AnyPerson) ...

20%2 MBD (L-AND * (SlotVal Gender Maie]
21*1 p

... (L-AND (*P AnyPerson) (SlotVal Gender Male}) ...
22%0k

Verifying slots
Husband

{Just to check)

756~RangeType(Husband]
] [FSingleton (UnitType (L-AND (*P AnyPerson)
{SlotVai Gender Maie]

<<«< 18.To give HisMother a Husband 220>

76=-Newlsa)

Name: HerHusband

Is a lExamples of: AnyPerson

Please enter the Knowledge Base in which to store HerHusband: GENLINFO
* Initialized HerHusband *

edit

23*pp

(Isa (AnyPerson)

Alllsas (AnyCT&U Anything AnyPerson)

Prototypes (TypicalPerson TypicalCT&U TypicaiThing)
MySiotsNowOrdered (OrderedPrototypes)

e

W

MyCreatedAs (IExampies (AnyPerson))

MyTimeOfCreation " 18-Aug-80 15:15:50"

MyCreator "NewUser"

MySensibleSlots (Descr Characteristics Prototypes AllSpecs AllGenis Allisas isa
OrderedPrototypes Specializations MySiots MyCreatedAs
MySensibieSiots MySlotsNowCOrdered MyEssentialVirtualSlois
MyToRe)r;ameMe MyToKiliMe MyTimeOfCreation MyCreator Hustand Mother
Gender

{Note Gender Is on MySensibleSiots now
{of course it wasn't before it existed.]}

23*(n Gender Male]
24%ok .

Varifying siots
HerHusband

77 ~PutValue(HisMother Husband HerHusband]
HerHusband
{Now HisMother:Husband Is HerHusband, as pianned.}

<<<< 19, Creata a new type of siot = Father 220D

78-SMARTARGLIST{CreateSlot]
(hid kb extra-pairs name)

{To define Father)
78«(CreateSlot '(Composition Husband Mother) 'GENLINFO NiL 'Father]
Father

{To see if it worked:)
79-Father(Fred]
HerHusband

{Lets see what this unit really looks lika}

88«EDITU(Father)
edit

A6*F Defn

37*2 pp

[LAMBODA (uNITcomp sLOTcomp oTHERcomp)
(OR (GetVailue (GetValue uNITcomp (QUOTE Mother)
(AddCOnCharacter oTHERcomp (QUOTE VERYSAFESLOT)))
{QUOTE Husband)
{AddOnCharacter oTHERcomp (QUOTE VERYSAFESLOT)))
NoEntry]
38*0k
Nothing changed.
Father

€< 20. There is a unit lor Composition: >)))

26+-EDITU(Composition)

adit

64%pp

(1sa (AnySiotCombiner)

Descr (Compose §1 of S2 of ... of Sn the unit)

G-17

|
!
4
H
BN W a2 J

<

FnForCaching NoEntry
FnForUpdating [LAMBDA (affectedsit fullHLD changedsit argnames hold)
{OR [MAPCONC (REVERSE (CDR fullHLD))
(FUNCTION (LAMBDA (sit morework)
{PROG1 (COND
((LISTP sit)
(COND
[hold (AND (SETQ morework
(UpdateASuiB
sit changedsit
{CONS (OUOTE x)
{COR argnames))
affectedsit)) .
{DoToEachFn
{COND
((COR hoid)
(CONS (QUOTE Compaosition)
hoid))
(T (CAR hold)))
changedsit argnames
(ConsN (QUOTE LAMBDA)
(QUOTE (x))
morework]
(T (UpdateASUIB sit changedsit argnames
affectedsit]
{(EQ sit changedsit)
(COND
(hold (Invalidateinversefn
(COND
((CDR hold)
(CONS (QUOTE Composition)
hold))
(T (CAR hoid)))
affectedsit changedsit argnames))
(T (InvalidateFn affectedsit changedsit
argnames]
(T NIL))
(SETQ hold (CONS sit hoid]
(LIST NIL]
CombinerFor (PossibleSiotsOfITypEx Alilsas AliExamples SuperTypEx® SubTypEx®)
Defn [LAMBDA (slotlist args)
(SETQ siotlist ([LAMBDA (**SELF2*)
(APPLY* (GetVaiue (QUOTE Composition) '
(QUOTE ToParseParts)
(QUOTE (VERYSAFESLOT VERYSAFEUNIT)))
slotlist]
NIL))
(PROG (walker answer isLIST)
(SETQ walker (REVERSE slotlist))
(SETQ answer (GetGetVail (CAR walker)
(QUOTE uNITcomp)
(QUOTE oTHERcomp)))
[SETQ isLIST (ListFormat (HardFormat (CAR walker]
LOOP(COND
((COR walker)
(SETQ walker (CDR walker))
(SETQ answer (ComposeAux (CAR waiker)
answer
{QUOTE oTHERcomp)))

(GO LOOP))

.

(T (RETURN (LIST [LIST (QUOTE LAMBDA)
(QUOTE (uNiTcomp sLOTcomp oTHERcomp))
(LIST (QUOTE OR)
(IsOk answer)
(COND
(isLIST (QUOTE NoEntries))
(T (QUOTE NoEntry]
[CONS (COND
(isLIST (QUOTE FSet))
(T (QUOTE FSingleton)))
(COR (RangeTypeQf (CAR siotlist]
(DomainTypeQf (CAR (LAST slotlist})})
(QUOTE PSEUDO-SLOT)
FnForinverting [LAMBODA (hidefn temp)
(AND [EVERY (CDR hidetn)
(FUNCTION (LAMBDA (x pmet)
{AND (SETQ pmet (InvertHLD x))
(SETQ temp (CONS pmet temp]
(CONS (QUOTE Composition)
temp]
RangeType (FSingleton SiotType)
GetFnsUsed [LAMBOA (hid s¢)
{(CONS (CAR hid)
{MapUnion (CDR hid)
{FUNCTION (LAMBDA (term)
{AND (LISTP term)
(GetAlIFNS term]
DefnlsedBy (Aliisas)
GetCVsUsed [LAMBOA (hid sc)
{OR [MapUnion (COR hid)
(FUNCTION (LAMBCA (term)
{COND
((ATOM term)
(LIST term))
(T (GetAliCVs term)
NoEntries]
Alllsas (AnySiotListFn AnyStorableFn AnyPracess Anything AnyCT&U AnyFuncticn
AnyUnitListFn AnyFunctional AnySiotCombiner)
Prototypes (TypicalSlotCombiner TypicalSiotListFn TypicaiStorableFn
TypicalFunctional TypicaiFunction TypicalProcess TypicalCT&U
TypicalThing)
MySlotsNowCQrdered (OrderedPrototypes)
ToParseParts (LAMBDA (args) (MAPCAR args (FUNCTION HLDefnParser]
64%ok
Nothing changed.
Composition

£ <<¢ 21. Examples of SlotCombiners 222>

{There are several exising slot combiners:}
6~(AllExamples 'AnySiotCombiner]
(Subsetting CommonXProd Intersecting FirstOk Starring Application
Compaosition Tripple OrderedStarring OrderedComposition
Unioning OrderedUnioning Plussing OneOf Sotten PutinOrder
Listing Donelindirectly)

{This class belongs in a subcategory of two more general classes:)
7 «SuperClass(AnySiotCombiner]
(AnySiotListFn Anyfunctional

G-19

{The first contains units which reprasent functions which each take a
list of slots as its argument.

It, in turn is a subclass of AnyUnitListFunction - i.e. functions
which take a list of units as arguments.

The second contains those "functions" which return, as a value,
another function. This category also includes, for example,
logical-operators, which map a list of predicates into a new predicate,
which returns T, e.g., when each of those predicates would return T.

Appendix C shows these classes in more detail.}

<<C<< 22. What else can we say about Father? 200>
80-RangeType(Father]

[FSingleton (UnitType (L-AND (*P AnyPerson)
(SlotVal Gender Mala]

{Let's see if we're allowed to say "HisMother” is someone’s Father)
91«(Putvaiue 'Visitor 'Father 'HisMother]
NiL

<<<< 23. Far too quiet: >>)>>

Isn't that annoying? it would especially even more so if we didn't know
why this function failed.

(Here, it's because Father must be Male, and "HisMother*® isn‘t.]

Let's make it noisier - in fact, let's create a whole new class of slots,
which are more informative.

To see how it will work, let us first see how PutValue really works:

<<«<< 24. How do accessing functions really work?)>>)>)

95-PP(Putvaiue]
loading from <CSO.RLLOUTIL..7

(PutVaiue
{LAMBDA (uNIT sLOT Val old why) **COMMENT=* =**COMMENT®** **COMMENT**
(APPLY* (GetAccessFn sLOT (QUOTE ToPutValue)
(QUOTE (VERYSAFESLOT))
(QUOTE UA-DELSLOT))
uNIT sLOT Vai old why])
(PutValue)

{50 you see, it basically just goes to the slot, and asks it how
put a value.
it applies the result of that GetAccessFn call on its list of arguments}

96+PP(GetAccessFn]
loading from <CSD.RLL)RLL..6

(GetAccessFn
[LAMBDA (sLOT thisslot oTHER dftfn) **COMMENT®* **COMMENT=**
(OR (MEMB (QUOTE IMPURE) '
oTHER)
(SETQ uContext sLOT))
(SET (COND
((MEMB (QUOTE IMPURE)
OTHER)
(QUOTE uValue))
(T (QUOTE oTHER)))

G-21

(OR (IsOk (UA~GETVALUE sLOT thisslot))

(isOk (FindDefault sLOT thissiot oTHER))

(CheckDefn (Warning (CONCAT "Unabie to find the * thisslot
"siotof "
sLOT *. Perhaps it is not a unit?*)))

dftfn

(QUOTE NoOp])

(GetAccessFn)})

{Essentially this sees if thera is a value stored on sLOT:thisslot
if s0, It uses that value. Otherwise, it calls FindDefauit, which)

<€<<< 25. The FindDefault function: 200>

97 «PP(FindDefauit)]
loading from <CSO.RLLIRLL..8

(FindDetauit
[LAMBDA (uUNIT uSLOT oTHERS) **COMMENT**
(AND (Statp uSLOT)
(MapUntiiOk [GetValue uUNIT (QUOTE OrderedPrototypas)
(AddOnCharacter oTHERs
(QUOTE (VERYSAFESLOT SAFE
FAST-GET
FAST-CACHE]

(FUNCTION (LAMBDA (x)
(FindValue (UA-GETVALUE x uSLOT)
x uSLOT oTHERS])

(FindDefauit)

{This scans through the unit's OrderedProtctypes,
returning the tirst value, V, which is nonNiL.}

} 88~(FindDefauit 'Father 'ToPutValue]
DefaultPutValue

{Note this is the value stored on TypicalSlot:ToPutValue)

100-EDITU(TypicaiSiot]

edit

40"f ToPutValue

41*p

- TOPUtVaiue DefaultPutValue
AfterPutValue DefauitAfterPutValue
BeforePutValue DefauitBeforePutValue
BeforeGetValue DefaultBeforeGetValue
AfterGetValue DefauitAfterGetVaiue
ToAddValue DefauitAddValue
ToDeleteVaiue DefaultDeleteValue
ToKiitVaiue DefauitKillValue
ToSubstVaiue DefauitSubstValue ...

{Note also BeforePutValue and AfterPutValue's values}

45%ok
Nothing changed.
TyplcalSlot

<<C<< 26. Strategy:)2

T ——

G-22

What we must do Is intercept this FindDefault.

First, we will write the function which actually prints the desired messaga.
Then create a whole new class of types of siots, which will, by defauit,
use this chattier put value.

<<«<< 27. What gets done when? ~ system dependent fns >>2)?

{First, rewrite the appropriate function, to report Type Errors
Need to see what DefauitPutValue does:)

3~PP(DefaultPutValue]
loading from <CSD.RLL>RLL..6

(DefaultPutValue
[LAMBDA (uNIT sLOT newValue oldValue why sitputter) **COMMENT=*
(ﬁ[on why (SETQ why (LIST (QUOTE UserCommand]
OR oldValue (SETQ oldValue (UA-GETVALUE uNiT sLOT))) }}
(AND (OR (MEMB (QUOTE Fast-Put) why)
(APPLY* (GetAccessFn sLOT (QUOTE BeforePutValue))
uNIT sLOT oldVaiue (CONS (GUOTE NewVal) newVaiue)

why)) -
{1sOk (SETQ sitputter (GetValue (GetValue sLOT (QUOTE Format)
(QUOTE (VERYSAFESLOT SAFE)))
(QUOTE FnFarPutting)
(QUOTE (VERYSAFESLOT SAFE]
[SETQ newVaiue (COND
((MustComputep newValue)
(UA-DELSLOT uNIT sLOT)
RecomputeMe)
((FormattedValuep oidVaiue)
(APPLY* (GetValue (ValueFormat oldValue)
(QUOTE FnForPutting)
(QUOTE (VERYSAFESLOT)))
uNIT sLOT newValue oidValue why sitputter))
((FormattedValuep newValue)
(APPLY® (GetValue (ValueFormat newValue)
(QUOTE FnForPutting)
{QUOTE (VERYSAFESLOT)))
uNIT sLOT newValue oldValue why sitputter))
(T (APPLY* sitputter uNIT sLOT newValue oldValue why]
(OR (MEMB (QUOTE Fast-Put)
why)
(APPLY*® (GetAccessFn sLOT (QUOTE AfterPutvalue))
uNIT sLOT newValue {(CONS (QUOTE OldVval)
oldValue)
why))
newValue))
(DeltaultPutvalue)

{in etfect, this first caills (GetAccessSlot slot '‘BeforePutValue)
on the arguments.

1t that returns nonNiL, it does the put,

and finally (if that also returned nonNil)

cails (GetAccessSiot siot 'AfterPutValue) on the arguments.}

4-GetAccessSlot(Father BaforePutvalue]
DefaultBeforePutValue

{Recall this appears on TypicaliSiot, way above.}

S«FindDefault(Father AfterPutvalue]
DetauitAfterPutVaiue

{ditto)

6~PP(DefaultBeforePutValue]
loading from <CSD.RLL>ALL..6

(DefauitBeforePutVaiue
{{ [LAMBOA (un sl oid modif why) **CCMMENT**
(COND
([oR (MEMSB (QUOTE UserCommand)
. why)
(MEMB (QUOTE Usertdits)
why)
(AND (MEMB (CQUOTE New-Unit)
why)
(NOT (EQUAL (COR modif)
oid]
(DefauitVerifyValue un si old modif why))
(T modit])}}
(DeafaultBeforePutValue)

{Aha - DefaultVerifyValue looks like tha function which attempts to verify
that a value is reasonablie.

(Note it only does this if this is a user edit, ...,

as it trusts its own puts...)}

7={DefauitVerifyValue 'Visitor ‘Father NiL '(NewVai . HerHusband]
T

8~(DefaultVerifyVaiua 'Visitor 'Father NiL '(NewVal . HisMother]
NIL

{Yep, that's the place. S0}

<<<< 28. Creating a new function 220>
9~-MOVD(DefaultBeforePutVaiue ChattyBPV T]

loading from <CSD.RLL)RLL..6
Please enter the Knowledge Base in which to store ChattyBPV: GENLINFO
"ChattyBPV defined using Interpreted Code for DefauitBeforePutvalue"

{(Note I've advised MOVD to be smart - copying the source code rather
than the compiled code;
.o and asking where to store this new function. 1
y [This is a simple database management facility.]
| told it to store this function in the list associated
with the GENLINFO kb.})

10-EDITF(ChattyBPV]

edit

62%-12p

((OR & & &) (DefsultVerifyVaiue un si old modif why))
653*-1p

{DefauitVerifyValue un si old modit why)

G-24

53*mbd (OR * (PROGN (WRITELNTTY *Unable to put * (COR modif) ™ onto " un
u:% sl " because of a type error!!!") NIL]

655*pp
(OR (DefaultVerityValue un s| old modif why)
(PROGN (WRITELNTTY "Unable to put * & ™ onto " un ":" s|
" because of a type errori!!"))
58%ok

ChattyBpPvV
<€¢<< 29. New class of types of slots -~ ChattySlots 2>>>)

{First, let me show you NawSubClass:}

93-PP(NewSubClass]
loading from <CSD.RLL>UTIL..7

{NewSubClass
[{LAMBOA (UNAM UOLD whichKB) **COMMENT** **COMMENT**
(NewuUnit UNAM UOLD (QUOTE ISubClass)
whichKB])

(NewSubClass)

{Recall "ISubClass" was an inheritance' unit we saw long ago.}

94~NewSubClass)

Name: AnyChattySiot

Is a iSubClass of: AnySiot

Please enter the Knowledge Base in which to store AnyChattySiot: GENLINFO

® Initialized AnyChattySiot *
i edit

39*p

(1sa (AnyClassOfObjects)

Aillsas (AnyCT&U Anything AnyClassOfObjects)

Prototypes (TypicaiClass TypicalCT&U TypicaiThing)

MySiotsNowOrdered (OrderedPrototypes)

MyCreatedAs (ISubClass &)

MyTimeOfCreation *18-Aug~80 17:03:13"

MyCreator "NewUser"

TotalSoFar O

SuperClass (AnySlot)

MySensibleSlots (Descr Characteristics Prototypes AliSpecs AllGen!s Allisas
Isa OrderedPrototypes Specializations MySlots MyCreatedAs
MySensibleSlots MySlotsNowOrdered MyEssentiaiVirtyalSlots
MyToRenameMe MyToKiilMe MyTimeOfCreation MyCreator TotaiSoFar --))

39%ck
Verifying slots
AnyChattySlot

{To make every example of AnyChaltySiot print more instructive messages,
(instead of just returning NiL,)

we have to intercept FindDefault's search for BeforePutValue,

This will happen if there is a TypicaiChattySiot, which has a
BeforePutVaiue value stored.

So now to create that unit:}

<<<<¢ 30. Creaie a new typical memter of AnyChattySiot 200>

k] {Now to create the TypicalChattySiot unit, and use this new
ChattyBPV function for its BeforePutValue value)

2~-NewTypEx(TypicalChattySiot AnyChattySict GENLINFO]
* Initialized TypicaiChattySiot *

edit

40"p

(Isa (AnyArchetypea)

TypicalExampieQf AnyChattySiot

Ne)wPossnbleSlots NoEntries

41%(n BeforePutVaiue ChattyBPV]

42%ok
Verifying siots
TypicaiChattySlot

{Ncw all exampies of AnyChattySiat will report such arrors. Pf:
First, the unaitered Husband:)

11=~(GetVaiuve 'Husband 'Prototypes)
(TypicaiVirtuaiSiot TypicaiUmitFn TypicaiStorabieFn TypicalProcass TypicaiThing
TypicalCT&U TypicalFunction TypicalSiot)
{Nota Husband's Prototypes, of coursa, omits TypicaiChattySiot)

12={PutValue 'Visitcr 'Husband ‘HisMother]
NiL

{Now move Husband over}

13«(PutVaiue 'Husband 'isa '(AnyChattySiot]
(AnyChattySiot)

{Husband's Prototypes have been rewtitten)

14«~(GetValue 'Husbend 'Prototypes)

(TypicalChattySlot TypicaiUnitFn TypicaiStorablefn TypicaiProcass TypicalThing
TypicalCT&U TypicaiFunction TypicalSiot)

15«redo 11

Unable to put HisMother onto Visitor:Husband because of a type error!l!

NIL

{Ta daaa!}

' 16-Exampies{AnyChattySiot]
| (Husband)

<< 31. Conclusion 22>
{That's about ail for now.)}

28~SYSOUT(DEMO]
<3SCRATCH>DEMO.EXE.1

29-L0GOUT]

G-26

it is now 18-Aug-80 17:37:40

Closing DribbleFile <CSD.l1A>

@ ; Now in the monitor.

TRACE.AUG18.1

R e e

